Vẽ tam giác ABC có AB = AC = 6cm; BC = 2cm. Sau đó đo góc A để kiểm tra rằng ∠A ≈20o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ trung tuyến AM của tam giác.
Độ dài trung tuyến AM là:
A. 8cm
B.
54
cm
C.
44
cm
Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ trung tuyến AM của tam giác.Độ dài trung tuyến AM là:
A. 8cm
B.54cm
C.44cm
D. 6cm
\(a,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\left(pytago\right)\)
\(b,\) Vì \(\widehat{BAC}=\widehat{AHB}\left(=90\right);\widehat{ABC}.chung\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)
\(c,\Delta ABC\sim\Delta HBA\left(cm.trên\right)\\ \Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Rightarrow AB^2=BH\cdot BC\)
\(d,\) Vì AD là p/g góc A
\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\\ \Rightarrow DC=\dfrac{4}{3}BD\)
Mà \(BD+DC=BC=10\)
\(\Rightarrow\dfrac{4}{3}BD+BD=10\\ \Rightarrow\dfrac{7}{3}BD=10\\ \Rightarrow BD=\dfrac{30}{7}\left(cm\right)\)
a: Xét ΔABC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
Xét ΔABD vuông tại D và ΔCAD vuông tại D có
góc DBA=góc DAC
=>ΔABD đồng dạng với ΔCAD
b: góc EAF+góc EDF=180 độ
=>AFDE nội tiếp
=>góc AFD+góc AED=180 độ
=>góc AFD=góc CED
Hình vẽ:
-) Dùng thước dựng đoạn thẳng BC = 2 cm.
-) Dùng compa dựng cung tròn tâm B, bán kính R = 6cm và dựng cung tròn tâm C, bán kính R = 6cm.
Hai cung tròn này cắt nhau tại A. Nối B với A, C với A.
Ta được tam giác ABC thỏa mãn đầu bài.
-) Dùng thước đo độ ta được: ∠A ≈ 20º