K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

zì BD là phân giác cua góc B

\(=>\frac{AD}{DC}=\frac{AB}{DC}\)

CE là tia phân giác góc E

\(=>\frac{AE}{EB}=\frac{AC}{BC}=\frac{AB}{BC}\)

\(=>\frac{AD}{DC}=\frac{AE}{EB}=>DE//BC\)( định lý ta lét đào )

\(=>\widehat{EDB}=\widehat{DBC}\left(soletrong\right)\)

mà \(\widehat{DBC}=\widehat{EBD}\)( phân giác )

\(=>\widehat{EBD}=\widehat{EDB}=>\Delta EBD\left(cân\right)\)

=> ED=EB=10cm

theo định lý ta lét : do ED//BC

\(\frac{ED}{BC}=\frac{AE}{AB}=\frac{AB-EB}{AB}=>\frac{AB-10}{AB}=\frac{10}{16}=>AB=26.67\)

31 tháng 3 2021

khúc cuối là sao nhỉ

8 tháng 2 2016

đề có sai k , lẽ ra DE = 4cm chứ nhỉ

9 tháng 2 2016
Đề đúng đấy ạ!

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=4^2+3^2=25\)

=>BC=5(cm)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

c: Sửa đề: ΔBHC đều

Ta có: ΔBAD=ΔBED

=>BA=BE

Xét ΔBEH vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBH}\) chung

Do đó: ΔBEH=ΔBAC

=>BH=BC

Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)

nên ΔBHC đều

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=4^2+3^2=25\)

=>BC=5(cm)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

c: Sửa đề: ΔBHC đều

Ta có: ΔBAD=ΔBED

=>BA=BE

Xét ΔBEH vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBH}\) chung

Do đó: ΔBEH=ΔBAC

=>BH=BC

Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)

nên ΔBHC đều

10 tháng 2 2019

tôi cũg đag cần giải bài này

14 tháng 4 2020

hình như đề bài sai thì phải

8 tháng 4 2017

A B C 6 10 D H K

a, Xét \(\Delta ABC\)VUÔNG tại A

Áp dụng định lý pitago ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB^2=BC^2-AC^2\)

\(\Rightarrow AB^2=10^2-6^2\)

\(\Rightarrow AB^2=100-36\)

\(\Rightarrow AB^2=64\)

\(\Rightarrow AB=\sqrt{64}=8\)

VẬY AB=8 cm

b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:

\(\widehat{BAD}=\widehat{BHD}=90độ\)

\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)

\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)

c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)

\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)

lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)

\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)

\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)

Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:

\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)

Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)

\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\Delta KBC\) cân tại B

8 tháng 4 2017

uhuhuhu sợ bài này lắm rồi !

30 tháng 11 2017

Vì DI = IE (cmt) nên MI là đường trung tuyến của tam giác MDE.

ΔMDE vuông (vì MD, ME là tia phân giác của góc kề bù) nên MI = DI = IE

Đặt DI = MI = x, ta có D I B M = A I A M (cmt) nên  x 15 = 10 − x 10

Từ đó x = 6 suy ra DE = 12cm

Đáp án: D