vẽ tam giác ABC nhọn có đường cao AH. Vẽ HI vuông góc với AC ở I
1) chứng minh AHI=C
2) giả sử B=75 độ; BAC = 65 độ. Tính AHI
ai nhanh 3k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình như
sai đề rùi bạn
ạ mình
cũng ko biết
rõ đâu nhưng đề
thấy là lạ
Mình chỉ vẽ hình cho bn dễ hình dung để làm thôi nên đừng bảo mik lười ~~
~ Hok tốt ~
#Blvck
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
Suy ra: AM=EF
b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
=>AH=4,8cm
c: Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
Ta có: ΔAHC vuông tại H
mà HF là đường trung tuyến
nên HF=AC/2=AF
mà AF=ME
nên HF=ME
Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: FE là đường trung bình
=>FE//BC
Xét tứ giác EHMF có
MH//FE
Do đó: EHMF là hình thang
mà EM=HF
nên EHMF là hình thang cân
Đường cao AH vuông góc với BC tại H,HI vuông góc AC tại I
=>\(\Delta AHI,\Delta AHC\)có\(90^0=\widehat{A}+\widehat{AHI}=\widehat{A}+\widehat{C}\Rightarrow\widehat{AHI}=\widehat{C}\)
\(\Delta ABC\)có\(\widehat{C}=180^0-\widehat{B}-\widehat{BAC}=180^0-75^0-65^0=40^0\)mà\(\widehat{AHI}=\widehat{C}\left(cmt\right)\Rightarrow\widehat{AHI}=40^0\)
a) Ta có: AHI^ + IHC^ = 90o => AHI^ = 90o - IHC^
Tam giác HIC: ICH^ = 90o - IHC^
=> AHI^ = ICH^ hay AHI^ = C^ (1)
b) Tam giác ABC: ABC^ + BAC^ + ACB^ = 180o => ACB^ = 180o - ABC^ - BAC^ = 180o - 75o - 65o = 40o (2)
Từ (1) và (2) => AHI^ = 40o