K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2023

a) \(70a+84b-20ab-24b^2\)

\(=\left(70a+84b\right)-\left(20ab+24b^2\right)\)

\(=14\left(5a+6b\right)-4b\left(5a+6b\right)\)

\(=\left(5a+6b\right)\left(14-4b\right)\)

\(=2\left(5a+6b\right)\left(7-2b\right)\)

b) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)

\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xyz+xz^2\right)+\left(xyz+y^2z+yz^2\right)\)

\(=xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(xy+yz+xz\right)\)

c) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)

\(=\left(x^2y+xy^2\right)+\left(xz^2+yz^2\right)+\left(x^2z+2xyz+y^2z\right)\)

\(=xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x^2+2xy+y^2\right)\)

\(=xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2\)

\(=\left(x+y\right)\left[xy+z^2+z\left(x+y\right)\right]\)

\(=\left(x+y\right)\left(xy+z^2+xz+yz\right)\)

\(=\left(x+y\right)\left[\left(xy+yz\right)+\left(xz+z^2\right)\right]\)

\(=\left(x+y\right)\left[y\left(x+z\right)+z\left(x+z\right)\right]\)

\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

26 tháng 11 2023

a, 70a + 84b - 20ab - 24b2

 = 14.(5a + 6b) - 4b(5a + 6b)

= (5a + 6b).(14 - 4b) 

26 tháng 11 2023

a: \(70a+84b-20ab-24b^2\)

\(=\left(70a+84b\right)-\left(20ab+24b^2\right)\)

\(=14\left(5a+6b\right)-4b\left(5a+6b\right)\)

\(=\left(5a+6b\right)\left(14-4b\right)\)

\(=2\left(7-2b\right)\left(5a+6b\right)\)

b: \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)

\(=\left(x^2y+x^2z\right)+\left(xy^2+xz^2\right)+\left(y^2z+yz^2\right)+3xyz\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2\right)+yz\left(y+z\right)+3xyz\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2\right)+yz\left(y+z\right)+2xyz+xyz\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2+2yz\right)+yz\left(y+z+x\right)\)

\(=x^2\left(y+z\right)+x\left(y+z\right)^2+yz\left(y+z+x\right)\)

\(=\left(y+z\right)\cdot x\left(x+y+z\right)+yz\left(y+z+x\right)\)

\(=\left(y+z+x\right)\cdot\left(xy+xz+yz\right)\)

c: \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)

\(=\left(x^2y+x^2z\right)+\left(xy^2+xz^2+2xyz\right)+\left(y^2z+yz^2\right)\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2+2xz\right)+yz\left(y+z\right)\)

\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)

\(=\left(y+z\right)\left(x^2+yz+xy+xz\right)\)

\(=\left(y+z\right)\left(x+z\right)\left(x+y\right)\)

24 tháng 9 2023

\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)

\(=\left(x^2y+xy^2+xyz\right)+\left(y^2z+yz^2+xyz\right)+\left(x^2z+xz^2+xyz\right)\)

\(=xy\left(x+y+z\right)+yz\left(y+z+x\right)+xz\left(x+z+y\right)\)

\(=\left(x+y+z\right)\left(xy+yz+xz\right)\)

NV
1 tháng 8 2021

\(=x\left(y^2-4\right)+xz\left(y+2\right)\)

\(=x\left(y+2\right)\left(y-2\right)+x\left(y+2\right)z\)

\(=x\left(y+2\right)\left(y-2+z\right)\)

\(xy^2-4x+xyz+2xz\)

\(=x\left(y-2\right)\left(y+2\right)+zx\left(y+2\right)\)

\(=x\left(y+2\right)\left(y-2+z\right)\)

2 tháng 11 2017

Ta có:

C(x) = (5x2y - 4xy2 + 5x - 3) - (xyz - 4x2y + xy2 + 5x - 1)

= 5x2y - 4xy2 + 5x - 3 - xyz + 4x2y - xy2 - 5x + 1

= -xyz + 9x2y - 5xy2 - 2

Chọn C

a: A = -2xy + 3/2xy^2 + 1/2xy^2 + xy = -2xy + 2xy^2 + xy = 2xy^2 - xy

b: B = xy^2z + 2xy^2z - xyz - 3xy^2z + xy^2z = 3xy^2z - xyz

c: C = 4x^2y^3 + x^4 - 2x^2 + 6x^4 - x^2y^3 = 7x^4 + 3x^2y^3 - 2x^2

d: D = 3/4xy^2 - 2xy - 1/2xy^2 + 3xy = 5/4xy^2 + xy

e: E = 2x^2 - 3y^3 - z^4 - 4x^2 + 2y^3 + 3z^4 = -2x^2 - y^3 + 2z^4

f: F = 3xy^2z + xy^2z - xyz + 2xy^2z - 3xyz = 6xy^2z - 2xyz

a: A=-2xy+3/2xy^2+1/2xy^2+xy

=-2xy+xy+3/2xy^2+1/2xy^2

=2xy^2-xy

b: \(B=xy^2z+2xy^2z-xyz-3xy^2z+xy^2z\)

\(=xy^2z\left(1+2-3+1\right)-xyz=xy^2z-xyz\)

c: \(=4x^2y^3-x^2y^3+x^4+6x^4-2x^2\)

\(=7x^4-x^2+3x^2y^3\)

d: \(=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+3xy-2xy\)

=1/4xy^2+xy

e: \(=2x^2-4x^2-3y^3+2y^3+3z^4-z^4\)

\(=-2x^2-y^3+2z^4\)

f: \(=xy^2z+3xy^2z+2xy^2z-xyz-3xyz\)

\(=6xy^2z-4xyz\)

20 tháng 2 2022

uầy hình như thiếu dữ kiện ý

5 tháng 6 2019

Ta có A + 2B = (x2y - xy2 + 3x2) + 2(x2y + xy2 - 2x2 - 1)

= x2y - xy2 + 3x2 + 2x2y + 2xy2 - 4x2 - 2

= 3x2y + xy2 - x2 - 2. Chọn C

a: \(A=2x^2y^3\cdot x^4y=2x^6y^4\)

\(B=xy^2\cdot4x^5y^2=4x^6y^4\)

b: \(C=A-B=-2x^6y^4\)

\(D=A+B=6x^6y^4\)

c: Bậc của C là 10

Bậc của D là 10