Cho góc xOy = 600 , A thuộc Ox, B thuộc Oy ( A; B khác O ). CM: OA + OB = < 2AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì điểm M nằm trong góc xOy và cách đều hai cạnh Ox và Oy nên M thuộc tia phân giác Oz của ∠(xOy).
Vì điểm M cách đều 2 điểm A và B nên M thuộc đường trung trực của AB.
Vậy M là giao điểm của đường trung trực của đoạn thẳng AB và tia phân giác Oz của ∠(xOy)
Do đó, có vô số điểm M thỏa mãn điều kiện trong câu a) khi OA = OB.
Cm : a) Xét t/giác OAH và t/giác OBK
có: \(\widehat{OHA}=\widehat{OKB}=90^0\) (gt)
OA = OB (gt)
\(\widehat{O}\) :chung
=> t/giác OAH = t/giác OBK (ch - gn)
b) Xét t/giác OMH và t/giác OMK
có: \(\widehat{OHM}=\widehat{OKM}=90^0\) (gt)
OH = OK (vì t/giác OAH = t/giác OBK)
OM : chung
=> t/giác OMH = t/giác OMK (ch - cgv)
=> \(\widehat{O_1}=\widehat{O_2}\) (2 góc t/ứng)
=> OM là tia p/giác của góc xOy
`a,` Gọi `a` giao `b` là `O'`.
Ta có: `hat(OAB) + hat(ABO') + hat(BO'A) + hat(AOB) = 360^o`
`<=> 90^o + 90^o + 90^o + hat(AO'B) =360^o`
`<=> hat(AO'B) = 90^o => a` vuông góc `b`.
`b,` Do `hat(xOy) = 90^o` nên `A, O, B` thẳng hàng.
Vì `hat(aAB) + hat(bBA) = 90^o + 90^o = 180^o` nên `a////b`.
a) Xét ΔOAN vuông tại A và ΔOBN vuông tại B có
ON chung
\(\widehat{AON}=\widehat{BON}\)(ON là tia phân giác của \(\widehat{AOB}\))
Do đó: ΔOAN=ΔOBN(cạnh huyền-góc nhọn)
Suy ra: NA=NB(hai cạnh tương ứng)
b) Ta có: ΔOAN=ΔOBN(cmt)
nên OA=OB(hai cạnh tương ứng)
Xét ΔOAB có OA=OB(cmt)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
c) Xét ΔAND vuông tại A và ΔBNE vuông tại B có
NA=NB(cmt)
\(\widehat{AND}=\widehat{BNE}\)(hai góc đối đỉnh)
Do đó: ΔAND=ΔBNE(cạnh góc vuông-góc nhọn kề)
Suy ra: ND=NE(hai cạnh tương ứng)
d) Ta có: ΔAND=ΔBNE(cmt)
nên AD=BE(Hai cạnh tương ứng)
Ta có: OA+AD=OD(A nằm giữa O và D)
OB+BE=OE(B nằm giữa O và E)
mà OA=OB(cmt)
và AD=BE(cmt)
nên OD=OE
Ta có: OD=OE(cmt)
nên O nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: ND=NE(cmt)
nên N nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra ON là đường trung trực của DE
hay ON⊥DE(đpcm)
Cm: a) Xét t/giác OAB và t/giác OAC
có góc C = góc B = 900 (gt)
OA : chung
góc O1 = góc O2 (gt)
=> t/giác OAB = t/giác OAC (ch - gn)
=> AB = AC (hai cạnh tương ứng)
b) Áp dụng định lí Py - ta - go vào t/giác OAB vuông tại B, ta có :
OA2 = OB2 + AB2
=> AB2 = OA2 - OB2 = 52 - 42 = 25 - 16 = 9
=> AB = 3 (cm)