K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2018

Chọn D

27 tháng 5 2018

a: Xét ΔBAC có BA=BC và góc ABC=60 độ

nên ΔABC đều

=>\(S_{ABC}=\dfrac{a^2\sqrt{3}}{4}\)

=>\(S_{ABCD}=\dfrac{a^2\sqrt{3}}{2}\)

23 tháng 4 2019

8 tháng 12 2018

23 tháng 10 2018

Đáp án A

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Lời giải:

$\widehat{BAD}=60^0\Rightarrow \widehat{BAO}=30^0$

$\frac{BO}{AB}=\sin \widehat{BAO}=\sin 30^0=\frac{1}{2}$

$\Rightarrow BO=\frac{AB}{2}=\frac{a}{2}$

$BD=2BO=a$

$\frac{AO}{AB}=\cos \widehat{BAO}=\cos 30^0=\frac{\sqrt{3}}{2}$

$\Rightarrow AO=\frac{\sqrt{3}a}{2}$

$\Rightarrow AC=\sqrt{3}a$

$S_{ABCD}=\frac{BD.AC}{2}=\frac{\sqrt{3}a^2}{2}$

$V_{S.ABCD}=\frac{1}{3}.SO.S_{ABCD}=\frac{1}{3}.\frac{3a}{4}.\frac{\sqrt{3}a^2}{2}=\frac{\sqrt{3}a^3}{8}$

a: SO vuông góc (ABCD)

=>(SAC) vuông góc (ABCD)

b: AC vuông góc BD

BD vuông góc SO

=>BD vuông góc (SAC)

=>(SBD) vuông goc (SAC)

NV
5 tháng 2 2021

Đề thiếu dữ liệu để xác định độ dài SA rồi bạn

a: BD vuông góc AC
BD vuông góc SA

=>BD vuông góc (SAC)

=>(SBD) vuông góc (SAC)

b: (SC;(ABCD))=(CS;CA)=góc SCA
Xét ΔBAC có BA=BC vàgóc BAC=60 độ

nên ΔBAC đều

=>AC=a

=>\(SC=\sqrt{SA^2+AC^2}=\dfrac{\sqrt{10}}{3}\cdot a\)

tan SCA=SA/AC=1/3

=>góc SCA=18 độ

15 tháng 12 2019