cac bạn ơi giúp mk bài này với :
Cho ba đa thức : A=3x - 2y^2 - 2z ; B = 2z-x^2-4y ; C = 4y-5z^2-3x cới x,y,z là các số khác 0 .Chững minh rằng trong ba đa thức trên phải co1 đa thức có gt âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) 5x(x - 3) - x + 3 = 0
=> 5x(x - 3) - (x - 3) = 0
=> (5x - 1)(x - 3) = 0
=> \(\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}5x=1\\x=3\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)
b) x3 + 3x2 = -3x - 1
=> x3 + 3x2 + 3x + 1 = 0
=> (x + 1)3 = 0
=> x + 1 = 0
=> x = -1
mặc kệ biến chú tâm vào hệ trong ngoặc rồi mũ nó lên
a)1
b)1
h(x) có nghiệm là 3/2
=> h(3/2) = a*(3/2)^2 -5*3/2 +3
=> a*(9/4) -15/2 +3 =0
a(9/4) =15/2-3
a= (9/2) :(9/4)
a = 2
a) \(A=4x\left(x+y\right)-5y\left(x-y\right)-4x^2=4x^2+4xy-5xy+5y^2-4x^2=5y^2-xy\)
Với x = -5; y = 2 thì: \(A=5\cdot2^2-\left(-5\right)\cdot2=20+10=30\)
b) \(B=-3x\left(x^2+y^2\right)+2y\left(x^2-y\right)=-3x^3-3xy^2+2yx^2-2y^2=-3x^3+2x^2y-3xy^2-2y^2\)
Với x = 1; y = 2 thì: \(B=-3\cdot1^3+2\cdot1^2\cdot2-3\cdot1\cdot2^2-2\cdot2^2=-3+4-12-8=-19\)
Ta có :
A+B+C = ( 3x - 2y2 -2y) + ( 2z - x2 -4y ) + ( 4y - 5z2 - 3x )
= -2y2 - x2 - 5z2 ( đoạn này mk làm tắt nhá )
= - 2y2 + ( -x2) + ( -5z2 )
= -( 2y2 + x2 + 5z2 ) < 0
vì x, y , z \(\ne\)0 nên \(\hept{\begin{cases}2y^2>0\\x^2>0\\5z^2>0\end{cases}}\)
=> 2y2 + x2 + 5z2 >0
=> - ( 2y2 + x2 + 5z2 ) <0
nên A+B+C <0
Tổng 3 đa thức trên <0 . Vậy trong 3 đa thức trên phải có ít nhất 1 đa thức có g.trị âm