Cho A = 11...15 (n số 1); B = 11...19 (n số 1). Chứng minh rằng AB + 4 là một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt x=11...11(n+1 chữ số 1)
a=x+4;b=x+8
ab+4=(x+4)(x+8)+4
=x^2+12x+32+4
=(x+6)^2 cp
\(ab+4=\left(11...1.10+5\right)\left(11...1.10+9\right)+4=\left(\frac{10^n-1}{9}.10+5\right)\left(\frac{10^n-1}{9}.10+9\right)+4.\)
\(=\left(\frac{10^{n+1}-10+45}{9}\right)\left(\frac{10^{n+1}-10+81}{9}\right)+4=\frac{\left(10^{n+1}+35\right)\left(10^{n+1}+71\right)+324}{81}\)\
\(=\frac{10^{2n+2}+106.10^{n+1}+2809}{81}=\frac{\left(10^{n+1}+53\right)^2}{81}=\left(\frac{10^{n+1}+53}{9}\right)^2\)
\(10^{n+1}+53=100...053\)(n-1 chữ số 0) có tổng các c/s=1+0+5+3=9
\(\Rightarrow10^{n+1}+53⋮9\Rightarrow\frac{10^{n+1}+53}{9}\in Z\)
=>ab+4 là số chính phương
Ta có: \(A+4=111...15+4=111...19=B\) ( có n chữ số 1)
=> \(A.B+4=A\left(A+4\right)+4=A^2+4A+4=\left(A+2\right)^2\) là số chính phương
ta có a<b<c=>a<c (1)
ta có 11<a mà c<11 =>c<11<a=>c<a (2)
từ (1)&(2)=> a &c mâu thuẫn với nhau vậy a,b,c không tồn tại để thỏa mãn điều kiện trên
tick đúng cho mình đi mình đã làm dùm bạn mòa
\(11\equiv1\left(mod5\right)\Rightarrow11^n\equiv1^n\left(mod5\right)\Rightarrow11^n-1⋮5\)
Tương tự: \(7^n\equiv2^n\left(mod5\right)\Rightarrow7^n-2^n⋮5\)
\(\Rightarrow A⋮5\)
\(11^n\equiv2^n\left(mod3\right)\Rightarrow11^n-2^n⋮3\)
\(7^n\equiv1^n\left(mod3\right)\Rightarrow7^n-1⋮3\)
\(\Rightarrow A⋮3\)
Mà 3 và 5 nguyên tố cùng nhau \(\Rightarrow A⋮\left(3.5\right)\) hay \(A⋮15\)
\(AB+4=\left(11...1+4\right)\left(11...1+8\right)+4=\) (có n+1 chữ số 1)
\(=11...1^2+12x11...1+36=\left(11...1+2x6x11...1+6^2\right)=\)
\(=\left(11...1+6\right)^2=11...7^2\) (có n chữ số 1)