K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2015

A = .... ( tự biết nhé ) 
2 A = 2 + 2^2 +.....+ 2^15 
2A - A = 2 ^ 2015 - 1 
Do đó B - A = 2 ^ 2015 - ( 2 ^ 2015 -1 ) = 1

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

1/

Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.

Số số hạng: $(101-1):4+1=26$

$A=(101+1)\times 26:2=1326$

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

2/

$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$

$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$

$=(1+2+2^2)(1+2^3+2^6+2^9)$

$=7(1+2^3+2^6+2^9)\vdots 7$

A=(1+2+2^2)+2^3(1+2+2^2)+...+2^96(1+2+2^2)+2^99

=7(1+2^3+...+2^96)+2^99 ko chia hết cho 7

DT
4 tháng 2 2023

`A=1+2+2^2+2^3+2^4+...+2^{200}`

`=>2A=2+2^2+2^3+2^4+2^5+...+2^{201}`

`=>2A-A=(2+2^2+2^3+2^4+2^5+...+2^{201})-(1+2+2^2+2^3+2^4+...+2^{200})`

`=>A=2^{201}-1`

`=>A+1=2^{201}`

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$A=(2+2^2)+(2^3+2^4)+....+(2^{99}+2^{100})$
$=2(1+2)+2^3(1+2)+...+2^{99}(1+2)$

$=2.3+2^3.3+...+2^{99}.3$

$=3(2+2^3+...+2^{99})\vdots 3$

Ta có đpcm.

21 tháng 11 2021

A=\((1+2)+\left(2^2+2^3\right)+...+\left(2^{19}+2^{20}\right)\)

A=\(3.1+2^2\left(1+2\right)+...+2^{19}\left(1+2\right)\)

A=\(3.1+3.2^2+...+3.2^{19}\)

A=\(3\left(1+2^2+...+2^{19}\right)\)\(⋮3\)

Vậy A\(⋮3\)

21 tháng 11 2021

A=(1+2)+(22+23)+...+(219+220)(1+2)+(22+23)+...+(219+220)

A=3.1+22(1+2)+...+219(1+2)3.1+22(1+2)+...+219(1+2)

A=3.1+3.22+...+3.2193.1+3.22+...+3.219

A=3(1+22+...+219)3(1+22+...+219)⋮3⋮3

NÊN  A⋮3

28 tháng 10 2023

yêu cầu là j vậy bạn

13 tháng 10 2024

A = 2 + 22 + 23 + … + 22004 . Chứng minh rằng A chia hết cho 3 , cho 7. 

 

3 tháng 5 2017

ta có :

1/2=1/40+1/40+....+1/40 (20 số hạng)

1/21+1/22+1/23....+1/40(có 20 số hạng)

vì 1/21>1/40

1/22>1/40

..........

1/39>1/40

1/40=1/40

=>A<1/2

A<1 chịu

3 tháng 5 2017

Ta có

\(\frac{1}{40}< \frac{1}{21}\\ \frac{1}{40}< \frac{1}{22}\\ ...\\ \frac{1}{40}< \frac{1}{39}\)

Mà số phần từ của A là 20

\(\Rightarrow\frac{1}{40}.20< A\Leftrightarrow\frac{1}{2}< A\)

Còn chứng minh bé hơn 1 thì tương tự bạn nhé!

25 tháng 12 2021

\(A=1+2+2^2+2^3+....+2^{98}+2^{99}\\ \Leftrightarrow A=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+....+\left(2^{98}+2^{99}\right)\\ \Leftrightarrow A=3+2^2.\left(1+2\right)+2^4.\left(1+2\right)+....+2^{98}.\left(1+2\right)\\ \Leftrightarrow A=3+3.2^2+3.2^4+....+3.2^{98}\\ \Leftrightarrow A=3.\left(1+2^2+2^4+...+2^{98}\right)⋮3\)