K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

nối m với n

15 tháng 3 2016

diện tích tam giác ABC = 27 cm2

diện tích tam giác AMN = 4,5

diện tích hình thang MNED = 9 cm2

diện h hình thang DECB = 13,5 cm2

diễn giải ra từng bước hộ mình với

21 tháng 12 2020

bạn tự vẽ hình nhé

vì AD là phân giác của \(\widehat{BAC}\) ⇒ \(\widehat{BAD}=\widehat{MAD}\) =\(\dfrac{\widehat{BAC}}{2}\)

a) xét ΔABD và ΔAMD, có:

AM=AB (gt)

\(\widehat{BAD}=\widehat{MAD}\) (cmt)

AD chung

⇒ ΔABD = ΔAMD (c.g.c) (đpcm)

b) Từ ΔABD = ΔAMD (cmt)

    ⇒ BD=DM( 2 cạnh t/ứng) (đpcm)

       \(\widehat{ABD}=\widehat{AMD}\) (2 góc t/ứng)(đpcm)

c) phần này có lẽ đề bài sai , phải là c/m Δ BDN =ΔMDC mới đúng.

vì \(\widehat{ABD}=\widehat{AMD}\) (cmt) ⇒ \(\widehat{DBN}=\widehat{DMC}\) ( do \(\widehat{ABD}\) và \(\widehat{DBN}\) là 2 góc kề bù; \(\widehat{AMD}\) và \(\widehat{DMC}\)là 2 góc kề bù)

vì \(\widehat{BDN}\) và \(\widehat{MDC}\) là 2 góc đối đỉnh⇒ ​​\(\widehat{BDN}\)​ =\(\widehat{MDC}\)

Xét Δ BDN và ΔMDC, có:

\(\widehat{BDN}\) =\(\widehat{MDC}\)(cmt)

BD=DM (cmt)

\(\widehat{DBN}=\widehat{DMC}\) (cmt)

⇒Δ BDN = ΔMDC (g.c.g) (đpcm)

d) từ Δ BDN = ΔMDC (cmt) ⇒ BN=MC

mà AB=AM ⇒ AB+BN =AM+MC

                    ⇔AN=AC.⇒ Δ ANC cân tại A.

và AB=AM(gt) ⇒ ΔABM cân tại A

      mà AD là phân giác của \(\widehat{BAM}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔABM⇔ AD ⊥ BM(đpcm)

    Vì  Δ ANC cân tại A (cmt) 

         AD là phân giác của \(\widehat{NAC}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔACN.⇔ AD⊥CN.

                Mà AD⊥ BM⇒ BM//CN(đpcm)

 

 

AH
Akai Haruma
Giáo viên
22 tháng 12 2020

Bổ sung hình để các bạn dễ hình dung:

undefined

20 tháng 12 2023

a: Xét ΔABD và ΔAMD có

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

b: Ta có: ΔABD=ΔAMD

=>DB=DM và \(\widehat{ABD}=\widehat{AMD}\)

c: Ta có: \(\widehat{ABD}+\widehat{NBD}=180^0\)(hai góc kề bù)

\(\widehat{AMD}+\widehat{CMD}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AMD}\)

nên \(\widehat{NBD}=\widehat{CMD}\)

Xét ΔDBN và ΔDMC có

\(\widehat{DBN}=\widehat{DMC}\)

DB=DM

\(\widehat{BDN}=\widehat{MDC}\)

Do đó: ΔDBN=ΔDMC

d: Ta có: ΔABD=ΔAMD

=>BD=MD

=>D nằm trên đường trung trực của BM(1)

ta có: AB=AM

=>A nằm trên đường trung trực của BM(2)

Từ (1) và (2) suy ra AD là đường trung trực của BM

=>AD\(\perp\)BM

Ta có: ΔDBN=ΔDMC

=>BN=MC

Xét ΔABC có \(\dfrac{AB}{BN}=\dfrac{AM}{MC}\)

nên BM//NC

a: Xét ΔAMC và ΔDMB có

MA=MD

góc AMC=góc DMB

MC=MB

=>ΔAMC=ΔDMB

b: ΔAMC=ΔDMB

=>góc MAC=góc MDB

=>AC//BD

=>BD vuông góc BA

=>ΔBAD vuông tại B

c: XétΔABC vuông tại A và ΔBAD vuông tại A có

AB chung

AC=BD

=>ΔABC=ΔBAD

d: AM=1/2BC

26 tháng 2 2023

đề sai mà nhỉ?

22 tháng 7 2019

10 tháng 2 2022

a, Vì tam giác ABC vuông tại A, M là trung điểm BC 

=? AM = MB = MC = BC/2 = 5 cm 

Theo định lí Pytago tam giác ABC vuông tại A

\(AB=\sqrt{BC^2-AC^2}=6cm\)

Diện tích tam giác ABC là\(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.6.8=24cm^2\)

b, Vì AD là đường phân giác nên \(\frac{AB}{AC}=\frac{DB}{DC}\Rightarrow\frac{DC}{AC}=\frac{DB}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\frac{DC}{8}=\frac{DB}{6}=\frac{DC+DB}{14}=\frac{10}{14}=\frac{5}{7}\Rightarrow DC=\frac{40}{7}cm;DB=\frac{30}{7}cm\)