cho tam giác ABC góc A= 120 độ; AD, BE, CF là 3 đường phân giác. Biết DE= 21 cm, DF= 20cm. Chứng minh góc FDE vuông.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số đo `hat(A)=(120^0+30^0)/2=75^0`
Số đo `hat(B)=120^0-75^0=45^0`
`Delta ABC` có `hat(A)+hat(B)+hat(C)=180^0`
`=>(hat(A)+hat(B))+hat(C)=180^0`
hay `120^0+hat(C)=180^0`
`=>hat(C)=180^0-120^0=60^0`
Vậy ...
Vì góc ngoài đỉnh C bằng 120 độ nên \(\widehat{A}+\widehat{B}=120^0\)
Mà \(\widehat{A}-\widehat{B}=60^0\Rightarrow\left\{{}\begin{matrix}\widehat{A}=\left(120^0+60^0\right):2=90^0\\\widehat{B}=120^0-90^0=30^0\end{matrix}\right.\)
\(\Rightarrow\widehat{C}=180^0-90^0-30^0=60^0\)
Hình tự vẽ nhé
Ta có:
D ∈ đường trung trực của AB => BD = DA => ΔABD cân tại D
E ∈ đường trung trực của AC => AE = CE => ΔACE cân tại E
Nối I với A
Vì I ∈ đường trung trực của AB
=> IA = IB
=> ΔABI cân tại I
=> BIA = 180° - 2BAI
Vì I ∈ đường trung trực của AC
=> IA = IC
=> ΔACI cân tại I
=> CIA = 180° - 2 CAI
Ta có:
BIA + CIA = 180° - 2BAI = 180° - 2CAI
=> BIC = 360° - 2BAC
=> BIC = 360° - 2.120
=> BIC = 360 - 240
=> BIC = 120°
đầu bài lúc vẽ hình đâu có điểm D đâu, sao tự nhiên lúc hỏi lòi đâu zậy ạ? Bạn xem xem có sai đầu bài ko?
Ta có góc C là : \(\widehat{C}=180^0-120^0=60^0\)
ta có tổng 3 góc trong một tam giác bằng 180 độ nên
\(\widehat{A}=180^0-\widehat{B}-\widehat{C}=180^0-70^0-60^0=50^0\)