Cho tam giác ABC vuông cân tại A. Các diểm D, E theo thứ tự di chuyển trên cạnh AB; AC sao cho Bd =AE. Xác định vị trí D;E sao cho;
a] DE có độ dài nhỏ nhất
b] Tứ giác BDEC có diện tích nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tương tự 2A.
Cho D º B, E º C Þ Vị trí điểm I.
CHo D º A, E º A Þ Vị trí điểm I.
Kết luận: I thuộc trung trực của BC.
a)
Đặt AB=AC=a (không đổi); BD=AE=b (0<x<a)
Áp dụng định lý Pi-ta go với \(\Delta ADE\) vuông tại A ta có:
\(DE^2=AD^2+AE^2=\left(a-x\right)^2+a^2=2x^2-2ax+a^2\)\(=2\left(x^2-ax\right)-a^2\)
\(=2\left(x-\frac{a^2}{4}\right)^2+\frac{a^2}{2}\ge\frac{a^2}{2}\)
Ta có DE nhỏ nhất \(\Leftrightarrow\)\(DE^2\) nhỏ nhất\(\Leftrightarrow x=\frac{a}{2}\)
\(\Leftrightarrow BD=AE=\frac{a}{2}\Leftrightarrow D,E\) là trung điểm của AB;AC.
Vậy D;E phải là trung điểm của AB;AC thì DE có độ dài nhỏ nhất.
b)
Ta có:\(S_{ADE}=\frac{1}{2}.AD.AE=\frac{1}{2}.AD.BD\)\(=\frac{1}{2}AD\left(AB-AD\right)=\frac{1}{2}\left(AD^2-AB.AD\right)\)
\(=-\frac{1}{2}\left(AD^2-2\frac{AB}{2}.AD+\frac{AB^2}{4}\right)+\frac{AB^2}{8}\)\(=-\frac{1}{2}\left(AD-\frac{AB}{4}\right)^2+\frac{AB}{2}\le\frac{AB^2}{8}\)
Vậy \(S_{BDEC}=S_{ABC}-S_{ADE}\ge\frac{AB^2}{2}-\frac{AB^2}{8}=\frac{3}{8}AB^2\) không đổi.
Do đó: \(min_{S_{BDEC}}=\frac{3}{8}AB^2\) khi D;E lần lượt là trung điểm của AB;AC.