Làm giúp tớ đi nha mọi người!!!!
Cho tam giác ABC có BC = a; AC = b; AB = c. CMR:
1) \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\le\sqrt{3}\left(a+b+c\right)\)
2) \(|\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}|< \frac{1}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Pi-ta-go đảo vào tam giác ABC có :
AB2+AC2=82+152
=64+225
=289
=172
=BC2
=> AB2+AC2=BC2
=> Tam giác ABC vuông tại A
Vậy tam giác ABC vuông tại A
8 cm 15 cm 17 cm
Ta có :
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow17^2=8^2+15^2\)
\(\Leftrightarrow289=64+225\)
\(\Leftrightarrow289=289\)
\(\Rightarrow\Delta ABC\)là \(\Delta\) vuông.
(Vì theo định lí Py-ta-go:\(BC^2=AB^2+AC^2\))
Kẽ EK song song với AB
NEKB có EK//NB ; NB = EK => NE=BK
Tam giác AMD = tam giác EKC vì :
+ MA = NB = EK
+ góc BAC = góc KEC ( KE // AB )
+ góc ABC = góc EKC ( KE // AB ) .
Do đó KC = MD
Vậy MD + NE = KC + BK = BC
a) ta có :
BC^2= 225 cm (1)
AC^2+BC^2=9^2+12^2=225 cm(2)
từ (1) và (2) suy ra:BC^2=AC^2+AB^2
=>tam giác ABC vuông tại a
\(DE=\sqrt{AD^2+AE^2}\)
\(BC=\sqrt{AB^2+AC^2}\)
mà AD<AB
và AE<AC
nên DE<BC
Bn lm theo cách lớp 7 đi ạ !
Lm thế k đc đâu ạ ! có lời giải bn ơi ! Mong bạn giúp lại ạ !
a: góc A=180-60-50=70 độ
Vì góc C<góc B<góc A
nên AB<AC<BC
b: Xét tứ giác DEBC co
A là trung điểm chung của DB và EC
nên DEBC là hình bình hành
=>DE=BC=6cm
c: Vì DEBC là hình bình hành
nên DE//BC
a. Phải là nhỏ hơn hẳn nhé, ko có dấu = đâu
CM:
a,b,c là 3 cạnh 1 tam giác\(\Rightarrow\left(a-b\right)^2< c^2\Rightarrow a^2+b^2< c^2+2ab\Rightarrow\sqrt{a^2+b^2}< \sqrt{c^2+2ab}\)
cm tương tự ta có: \(VT< \sqrt{c^2+2ab}+\sqrt{b^2+2ac}+\sqrt{a^2+2bc}\)
Theo BĐT Bunhia \(\Rightarrow VT< \sqrt{a^2+2bc}+\sqrt{b^2+2ac}+\sqrt{c^2+2ab}\)\(\le\sqrt{\left(1+1+1\right)\left(a^2+b^2+c^2+2ab+2bc+2ac\right)}=\sqrt{3\left(a+b+c\right)^2}=\sqrt{3}.\left(a+b+c\right)\)
2, (cần cù bù thông minh) Quy đồng
\(\left|\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\right|=...=\left|\frac{\left(b-c\right)\left(a-c\right)\left(a-b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right|\) (chỗ ba chấm là bước quy đồng tự làm)
\(=\frac{\left|a-b\right|}{a+b}.\frac{\left|b-c\right|}{b+c}.\frac{\left|a-c\right|}{a+c}\)
\(\le\frac{ \left|a-b\right|}{2\sqrt{ab}}.\frac{\left|b-c\right|}{2\sqrt{bc}}.\frac{\left|a-c\right|}{2\sqrt{ca}}\left(Cauchy\right)\)
\(< \frac{c}{2\sqrt{ab}}.\frac{a}{2\sqrt{bc}}.\frac{b}{2\sqrt{ca}}\left(Bđt\Delta\right)\)
\(=\frac{1}{8}\left(đpcm\right)\)