Cho tam giác ABC vuông tại A; AB<AC. Kẻ AH vuông góc BC. Lấy D thuộc HC: HD=HB. Kẻ CE vuông góc AD kéo dài. Chứng minh:a) Góc BAH = ACBb) CB là phân giác góc ACE A B C D H E ...
Đọc tiếp
Cho tam giác ABC vuông tại A; AB<AC. Kẻ AH vuông góc BC. Lấy D thuộc HC: HD=HB. Kẻ CE vuông góc AD kéo dài. Chứng minh:
a) Góc BAH = ACB
b) CB là phân giác góc ACE
a) Tam giác ABC vuông tại A => góc ACB + ABC = 90o (1)
Do AH vuông góc với BC => tam giác AHB vuông tạo H
=> góc BAH + ABC = 90o (2)
từ (1)(2) => góc ACB = BAH (3)
b) Tam giác ADB có AH là đường cao đồng thời là đường trung tuyến (do HD = HB)
=> tam giác ADB cân tại A => AH là phân giác của góc DAB
=> góc BAH = góc HAD (4)
Ta có: tam giác ADH vuông tại H => góc HAD + ADH = 90o
Tam giác CED vuông tại E => góc ECD + CDE = 90o
Mặt khác, góc ADH = CDE (do đối đỉnh)
nên góc HAD = ECD (5)
Từ (3)(4)(5) => góc ACB = ECD => CB là phân giác của góc ACE
k mk đi làm ơn
mk đang bị âm điểm