1) A = (3x - 1) . (4x + 2)
Tìm x để A = 0 ; A > 0 ; A < 0 (=2 cách)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:\hept{\begin{cases}3x\ne0\\x+1\ne0\\2-4x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{1}{2}\end{cases}}\)
\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)
\(=\left[\frac{\left(x+1\right)\left(x+2\right)}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x\left(x+1\right)}{3x\left(x+1\right)}\right]:\frac{2\left(1-2x\right)}{x+1}-\frac{3x+1-x^2}{3x}\)
\(=\frac{\left(x+1\right)\left(x+2\right)+6x-9x\left(x+1\right)}{3x\left(x+1\right)}.\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(=\frac{2-8x^2}{3x\left(x+1\right)}.\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(=\frac{1+2x-3x-1+x^2}{3x}\)
\(=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)
b)\(\text{Với }x\ne0,x\ne-1,x\ne\frac{1}{2}\text{ ta có:}\)
\(\text{Để A< 0\Leftrightarrow}\frac{x-1}{3}< 0\Rightarrow x-1< 0\Leftrightarrow x< 1\)
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
a: \(A=4x-3x^2+20-15x-9x^2-12x-4+\left(2x+1\right)^3-\left(8x^3-1\right)\)
\(=-12x^2-23x+16+8x^3+12x^2+6x+1-8x^3+1\)
\(=-17x+18\)
Bài 1:
a) \(x^2-5x+1=0\)
\(\Leftrightarrow\left(x^2-5x+\frac{25}{4}\right)-\frac{21}{4}=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2-\frac{\left(\sqrt{21}\right)^2}{2^2}=0\)
\(\Leftrightarrow\left(x-\frac{5+\sqrt{21}}{2}\right)\left(x+\frac{\sqrt{21}-5}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5+\sqrt{21}}{2}=0\\x+\frac{\sqrt{21}-5}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{21}}{2}\\x=\frac{5-\sqrt{21}}{2}\end{cases}}\)
b) \(3x^2-12x-1=0\)
\(\Leftrightarrow3\left(x^2-4x+4\right)-13=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(\sqrt{\frac{13}{3}}\right)^2=0\)
\(\Leftrightarrow\left(x-2-\sqrt{\frac{13}{3}}\right)\left(x-2+\sqrt{\frac{13}{3}}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2+\sqrt{\frac{13}{3}}\\x=2-\sqrt{\frac{13}{3}}\end{cases}}\)
Bài 2:
a) \(A=\frac{1}{4}x^2-x+1=\left(\frac{1}{2}x-1\right)^2\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(\frac{1}{2}x-1\right)^2=0\Rightarrow\frac{1}{2}x=1\Rightarrow x=2\)
Vậy Min(A) = 0 khi x = 2
b) \(B=3x^2-4x-2=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)-\frac{10}{3}=3\left(x-\frac{2}{3}\right)^2-\frac{10}{3}\ge-\frac{10}{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(3\left(x-\frac{2}{3}\right)^2=0\Rightarrow x=\frac{2}{3}\)
Vậy \(Min\left(B\right)=-\frac{10}{3}\Leftrightarrow x=\frac{2}{3}\)
\(A=\dfrac{x^2+x-2+x^2-x-2-4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-3\right)}{2\left(x+2\right)}=\dfrac{2\left(x-2\right)\left(x+2\right)\left(x-3\right)}{2\left(x-2\right)\left(x+2\right)^2}=\dfrac{x-3}{x+2}\\ A\le0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\x+2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\x+2>0\end{matrix}\right.\end{matrix}\right.\Rightarrow-2< x< 3;x\ne0\left(ĐKXD\right)\)
\(P=1+\frac{x+3}{x^2+5x+6}:\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)
\(P=1+\frac{1}{x+2}:\left(\frac{4x^2.2}{4x^2\left(x-2\right)}-\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{1}{x+2}\right)\)
\(P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\)
\(P=1+\frac{1}{x+2}:\left(\frac{2x+4-x-x+2}{\left(x+2\right)\left(x-2\right)}\right)\)
\(P=1+\frac{1}{x+2}:\frac{6}{\left(x+2\right)\left(x-2\right)}=1+\frac{\left(x+2\right)\left(x-2\right)}{6\left(x+2\right)}=1+\frac{x-2}{6}\)
\(=\frac{x+4}{6}.P=0\Leftrightarrow x=-4\)
\(P>0\Leftrightarrow x>-4\)
b
\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)
Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)
a
Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)
\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)
Với \(x\ge4\) ta có:
\(3x-12+4x=2x-2\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\left(KTMĐK\right)\)
Với \(x< 4\) ta có:
\(12-3x+4x=2x-2\)
\(\Rightarrow10=x\left(KTMĐK\right)\)
Để A=0
ta có\(A=\left(3x-1\right)\left(4x+1\right)\)
\(\Rightarrow A=\orbr{\begin{cases}3x-1=0\\4x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{-1}{4}\end{cases}}\)