Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a. x2 - 5=0
=>x2 = 0+5 = 5
=> x = \(\sqrt{5}\)
vậy x= \(\sqrt{5}\)
sorry biết mỗi a thôi
a) x2 - 5 = 0
x2 = 0 + 5
x2 = 5
=> x = \(\sqrt{5}\)
Vậy ...
1. a . 3x2 - 6x = 0
\(\Leftrightarrow3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b. x3 - 13x = 0
\(\Leftrightarrow x\left(x^2-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)
c. 5x ( x - 2001 ) - x + 2001 = 0
<=> 5x ( x - 2001 ) - ( x - 2001 ) = 0
\(\Leftrightarrow\left(5x-1\right)\left(x-2001\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2001=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2001\end{cases}}\)
\(x^2-25x=0\)
\(\Rightarrow x\left(x-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=25\end{cases}}}\)
vậy_
\(\left(4x-1\right)^2-9=0\)
\(\Rightarrow\left(4x-1\right)^2-3^2=0\)
\(\Rightarrow\left(4x-1+3\right)\left(4x-1-3\right)=0\)
\(\Rightarrow\left(4x+2\right)\left(4x-4\right)=0\)
\(\Rightarrow2\cdot\left(2x+1\right)\cdot4\cdot\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}}\)
vậy_
Bài 2 :
a) \(3x^2-18x+27\)
\(=3\left(x^2-6x+9\right)\)
\(=3\left(x^2-2\cdot x\cdot3+3^2\right)\)
\(=3\left(x+3\right)^2\)
b) \(xy-y^2-x+y\)
\(=y\left(x-y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left(y-1\right)\)
c) \(x^2-5x-6\)
\(=x^2+x-6x-6\)
\(=x\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x-6\right)\)
Bài 1:
a) \(x^2-5x+1=0\)
\(\Leftrightarrow\left(x^2-5x+\frac{25}{4}\right)-\frac{21}{4}=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2-\frac{\left(\sqrt{21}\right)^2}{2^2}=0\)
\(\Leftrightarrow\left(x-\frac{5+\sqrt{21}}{2}\right)\left(x+\frac{\sqrt{21}-5}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5+\sqrt{21}}{2}=0\\x+\frac{\sqrt{21}-5}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{21}}{2}\\x=\frac{5-\sqrt{21}}{2}\end{cases}}\)
b) \(3x^2-12x-1=0\)
\(\Leftrightarrow3\left(x^2-4x+4\right)-13=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(\sqrt{\frac{13}{3}}\right)^2=0\)
\(\Leftrightarrow\left(x-2-\sqrt{\frac{13}{3}}\right)\left(x-2+\sqrt{\frac{13}{3}}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2+\sqrt{\frac{13}{3}}\\x=2-\sqrt{\frac{13}{3}}\end{cases}}\)
Bài 2:
a) \(A=\frac{1}{4}x^2-x+1=\left(\frac{1}{2}x-1\right)^2\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(\frac{1}{2}x-1\right)^2=0\Rightarrow\frac{1}{2}x=1\Rightarrow x=2\)
Vậy Min(A) = 0 khi x = 2
b) \(B=3x^2-4x-2=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)-\frac{10}{3}=3\left(x-\frac{2}{3}\right)^2-\frac{10}{3}\ge-\frac{10}{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(3\left(x-\frac{2}{3}\right)^2=0\Rightarrow x=\frac{2}{3}\)
Vậy \(Min\left(B\right)=-\frac{10}{3}\Leftrightarrow x=\frac{2}{3}\)