K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2015

giả sử d là ucln của 4n+1 và 6n+1

=>4n+1 chia hết cho d=>12n+3 chia hết cho d

    6n+1 chia hết cho d=>12n+2 chia hết cho d

=>12+3-12-2:d

=>1:d

=>d=1

=>ucln của 4n+1 và 6n+1 là 1(điều phải chứng minh)

5 tháng 3 2017

gọi ƯC(4n+1;6n+1) là d 

suy ra 4n+1 chia hết cho d 

suy ra 6(4n+1)chia hết cho d

suy ra 24n+6 chia hết cho d

lại có 6n+1 chia hết cho d 

suy ra 4(6n+1) chia hết cho d

suy ra 24n+4 chia hết cho d

mà 24n+6 chia hết cho d

suy ra 24n+6-(24n+4)chia hết cho d

suy ra 2 chia hết cho d

suy ra d=Ư(2)={1;2;-1;-2}

vì n thuộc N nên n={1;2)

nếu d=2 suy ra 4n+1 chia hết cho2

vì 4n chia hết cho 2 và 1 ko chia hết cho 2

suy ra 4n+1 ko chia hết cho 2 

suy ra d ko thể =2

suy ra d=1

suy ra ƯCLN(4n+1;6n+1)=1

vậy bài toán đc chứng minh

17 tháng 11 2017

ta lập biểu thưc vfhgjhkjggj

fhfhgjh;hjghg-gjgjh=ggrutrutiyỳjkjfgf[ỵt[tjrgtgfugeidgưeuđewvd76e

a.b.c.d.e.f.g=100

fsjshssiusksuusmsumsú,súksúksúlsusúkúlsú=shsjsk-sssskảy,hehhhugeywhoewugrfteocjnr;djfctta  

ta lập luôn 1 biểu thức ậmkrgkfhrhfytf7eỷ6ềwỷwt9fuềe9re6dteudfudỷ4hd94

17 tháng 11 2017

Vì 396 : a dư 30 nên a > 30

Theo bài ra ta có : 

396 chia a dư 30 

=> ( 396 - 30 ) \(⋮\)a => 366  \(⋮\)a

Lại có : 473 chia a dư 23

=> ( 473 - 23 ) \(⋮\)a => 450 \(⋮\)a

Từ (1) và (2) => a \(\in\)ƯC( 366;450)

Ta có : 366 = 2 .3 . 61

             450 = 2 . 32 . 52

Khi đó ƯCLN( 366;450 ) = 2 . 3 = 6

=> ƯC( 366;450 ) = Ư(6) = { 1 ;2 ; 3 ; 6 }

Vậy a \(\in\){1;2;3;6}

7 tháng 12 2017

Gọi d là ước chung lớn nhất của 4n + 1 và 5n + 1.
Suy ra \(\hept{\begin{cases}4n+1⋮d\\5n+1⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}5\left(4n+1\right)⋮d\\4\left(5n+1\right)⋮d\end{cases}}}\).
Suy ra \(5\left(4n+1\right)-4\left(5n+1\right)⋮d\Leftrightarrow1⋮d\).
Vậy d = 1.

8 tháng 10 2021

undefined

xong rồi đó

22 tháng 11 2016

a) 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất bằng 1. Vì a và b là 2 số nguyên tố cùng nhau nên ƯCLN(a ; b) = 1

b) Gọi d là ƯCLN(2n + 5 ; 3n + 7)

Vì d là ƯCLN(2n + 5 ; 3n + 7) nên :

2n + 5 chia hết cho d => (2n + 5) x 3 = 6n + 15 chia hết cho d

3n + 7 chia hết cho d => (3n + 7) x 2 = 6n + 14 chia hết cho d

Hiển nhiên 2 số liên tiếp có ước chung lớn nhất là 1. Mà 6n + 15 và 6n + 14 là 2 số liên tiếp nên 6n + 15 và 6n + 14 có ước chung lớn nhất là 1 => d = 1 ( không có d lớn hơn hay nhỏ hơn ngoài d = 1)

Mà d là ƯCLN(2n + 5 ; 3n + 7) nên 1 là ƯCLN(2n + 5 ; 3n + 7) nên 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau

K NHA BẠN IU

17 tháng 1 2016

a)Gọi ƯCLN(a, a - b) = d (với mọi d thuộc N*)

Ta có: a chia hết cho b, b chia hết cho d và a >= b

=> ƯCLN(a, b) = 1 => ƯCLN(a, a - b) = d => 1 = d => d = 1

=> đpcm

b) Gọi ƯCLN(a, a + b) = d (với mọi d thuộc N*)

Ta có: a chia hết cho b, b chia hết cho d và a >= b

=> ƯCLN(a, b) = 1 => ƯCLN(a, a + b) = d => 1 = d => d = 1

=> đpcm

17 tháng 1 2016

BẠN ƠI mình sory nhé mink lười quá ak mà bạn chứng minh (a , a+b)=1 nhé từ đó suy ra chắc chắn làm đc ak mình bt làm mà ở lớp đc cô giáo dạy ròi