chứng minh UCLN(4N+1; 6N+1)=1 ( Mọi n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta lập biểu thưc vfhgjhkjggj
fhfhgjh;hjghg-gjgjh=ggrutrutiyỳjkjfgf[ỵt[tjrgtgfugeidgưeuđewvd76e
a.b.c.d.e.f.g=100
fsjshssiusksuusmsumsú,súksúksúlsusúkúlsú=shsjsk-sssskảy,hehhhugeywhoewugrfteocjnr;djfctta
ta lập luôn 1 biểu thức ậmkrgkfhrhfytf7eỷ6ềwỷwt9fuềe9re6dteudfudỷ4hd94
Vì 396 : a dư 30 nên a > 30
Theo bài ra ta có :
396 chia a dư 30
=> ( 396 - 30 ) \(⋮\)a => 366 \(⋮\)a
Lại có : 473 chia a dư 23
=> ( 473 - 23 ) \(⋮\)a => 450 \(⋮\)a
Từ (1) và (2) => a \(\in\)ƯC( 366;450)
Ta có : 366 = 2 .3 . 61
450 = 2 . 32 . 52
Khi đó ƯCLN( 366;450 ) = 2 . 3 = 6
=> ƯC( 366;450 ) = Ư(6) = { 1 ;2 ; 3 ; 6 }
Vậy a \(\in\){1;2;3;6}
Gọi d là ước chung lớn nhất của 4n + 1 và 5n + 1.
Suy ra \(\hept{\begin{cases}4n+1⋮d\\5n+1⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}5\left(4n+1\right)⋮d\\4\left(5n+1\right)⋮d\end{cases}}}\).
Suy ra \(5\left(4n+1\right)-4\left(5n+1\right)⋮d\Leftrightarrow1⋮d\).
Vậy d = 1.
a) 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất bằng 1. Vì a và b là 2 số nguyên tố cùng nhau nên ƯCLN(a ; b) = 1
b) Gọi d là ƯCLN(2n + 5 ; 3n + 7)
Vì d là ƯCLN(2n + 5 ; 3n + 7) nên :
2n + 5 chia hết cho d => (2n + 5) x 3 = 6n + 15 chia hết cho d
3n + 7 chia hết cho d => (3n + 7) x 2 = 6n + 14 chia hết cho d
Hiển nhiên 2 số liên tiếp có ước chung lớn nhất là 1. Mà 6n + 15 và 6n + 14 là 2 số liên tiếp nên 6n + 15 và 6n + 14 có ước chung lớn nhất là 1 => d = 1 ( không có d lớn hơn hay nhỏ hơn ngoài d = 1)
Mà d là ƯCLN(2n + 5 ; 3n + 7) nên 1 là ƯCLN(2n + 5 ; 3n + 7) nên 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau
K NHA BẠN IU
a)Gọi ƯCLN(a, a - b) = d (với mọi d thuộc N*)
Ta có: a chia hết cho b, b chia hết cho d và a >= b
=> ƯCLN(a, b) = 1 => ƯCLN(a, a - b) = d => 1 = d => d = 1
=> đpcm
b) Gọi ƯCLN(a, a + b) = d (với mọi d thuộc N*)
Ta có: a chia hết cho b, b chia hết cho d và a >= b
=> ƯCLN(a, b) = 1 => ƯCLN(a, a + b) = d => 1 = d => d = 1
=> đpcm
giả sử d là ucln của 4n+1 và 6n+1
=>4n+1 chia hết cho d=>12n+3 chia hết cho d
6n+1 chia hết cho d=>12n+2 chia hết cho d
=>12+3-12-2:d
=>1:d
=>d=1
=>ucln của 4n+1 và 6n+1 là 1(điều phải chứng minh)
gọi ƯC(4n+1;6n+1) là d
suy ra 4n+1 chia hết cho d
suy ra 6(4n+1)chia hết cho d
suy ra 24n+6 chia hết cho d
lại có 6n+1 chia hết cho d
suy ra 4(6n+1) chia hết cho d
suy ra 24n+4 chia hết cho d
mà 24n+6 chia hết cho d
suy ra 24n+6-(24n+4)chia hết cho d
suy ra 2 chia hết cho d
suy ra d=Ư(2)={1;2;-1;-2}
vì n thuộc N nên n={1;2)
nếu d=2 suy ra 4n+1 chia hết cho2
vì 4n chia hết cho 2 và 1 ko chia hết cho 2
suy ra 4n+1 ko chia hết cho 2
suy ra d ko thể =2
suy ra d=1
suy ra ƯCLN(4n+1;6n+1)=1
vậy bài toán đc chứng minh