Tìm x,y,z biết :
a) 2x = 5y ; 3y = 4z và x - y + z = 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a tự làm nhé
b, \(\frac{2x+3}{24}=\frac{3x-1}{32}\)
\(\Leftrightarrow32(2x+3)=24(3x-1)\)
\(\Leftrightarrow64x+96=72x-24\)
\(\Leftrightarrow64x+96-72x=-24\)
\(\Leftrightarrow96-8x=-24\Leftrightarrow x=15\)
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
2x = 5y = 7z\(\Rightarrow\frac{2x}{70}=\frac{5y}{70}=\frac{7z}{70}=\frac{x}{35}=\frac{y}{14}=\frac{z}{10}=\frac{2x+y-z}{70+14-10}=\frac{74}{74}=1\Rightarrow\hept{\begin{cases}x=35\\y=14\\z=10\end{cases}}\)
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2};5y=6z\Rightarrow\frac{y}{6}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{6}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{6}=\frac{z}{10}=\frac{x+y-z}{9+6-10}=-\frac{20}{5}=-4\)
\(\Rightarrow x=-36;y=-24;z=-40\)
ta có: 2x=3y => x=\(\frac{3y}{2}\)
5y=6z => z=\(\frac{5y}{6}\)Thay x và z vào biểu thức x+y=z-20 ta được:
\(\frac{3y}{2}\)+y =\(\frac{5y}{6}\)-20
\(\frac{3y.3}{2.3}\)+\(\frac{6y}{6}\)-\(\frac{5y}{6}\)=-20
\(\frac{9y+6y-5y}{6}\)=-20
\(\frac{10y}{6}\)=-20
10y=-20.6
10y= -120
y=-12 . =>x=\(\frac{3.\left(-12\right)}{2}\)=-18 ,z=-10
a) Giải:
Ta có: \(2x=3y=4z\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{2x}{12}=\frac{3y}{12}=\frac{5z}{15}=\frac{2x+3y-5z}{12+12-15}=\frac{-1,8}{9}=-0,2\)
+) \(\frac{x}{6}=-0,2\Rightarrow x=-1,2\)
+) \(\frac{y}{4}=-0,2\Rightarrow y=-0,8\)
+) \(\frac{z}{3}=-0,2\Rightarrow z=-0,6\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(-1,2;-0,8;-0,6\right)\)
b) Giải:
Ta có: \(2x=5y\Rightarrow\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{20}=\frac{y}{8}\)
\(3y=8z\Rightarrow\frac{y}{8}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{20}=\frac{y}{8}=\frac{z}{3}=\frac{2y}{16}=\frac{x+2y+z}{20+16+3}=\frac{-39}{39}=-1\)
+) \(\frac{x}{20}=-1\Rightarrow x=-20\)
+) \(\frac{y}{8}=-1\Rightarrow y=-8\)
+) \(\frac{z}{3}=-1\Rightarrow z=-3\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(-20;-8;-3\right)\)
Ta có :
\(2x=3y=4x\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{5z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{2x}{12}=\frac{3y}{12}=\frac{5z}{15}=\frac{2x+3y-5z}{12+12-15}=-\frac{1,8}{9}=-\frac{1}{5}\)
\(\Rightarrow\begin{cases}x=-\frac{6}{5}\\y=-\frac{4}{5}\\z=-\frac{3}{5}\end{cases}\)
b)
\(\begin{cases}2x=5y\\3y=8z\end{cases}\)
\(\Rightarrow\begin{cases}\frac{x}{5}=\frac{y}{2}\\\frac{y}{8}=\frac{z}{3}\end{cases}\)
\(\Rightarrow\begin{cases}\frac{x}{20}=\frac{y}{8}\\\frac{y}{8}=\frac{z}{3}\end{cases}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{z}{3}=\frac{2y+x+z}{16+20+3}=-\frac{39}{39}=-1\)
\(\Rightarrow\begin{cases}x=-20\\y=-8\\z=-3\end{cases}\)
\(2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{2};7x=3z\Rightarrow\dfrac{x}{3}=\dfrac{z}{7}\\ \Rightarrow\dfrac{x}{15}=\dfrac{y}{6}=\dfrac{z}{35}=\dfrac{x-2y+z}{15-12+35}=\dfrac{-19}{38}=-2\\ \Rightarrow\left\{{}\begin{matrix}a=-30\\b=-12\\c=-70\end{matrix}\right.\)
\(2x=5y\Rightarrow\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{10}=\frac{y}{4}\)(1)
\(3y=4z\Rightarrow\frac{y}{4}=\frac{z}{3}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{x}{10}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{4}=\frac{z}{3}=\frac{x-y+z}{10-4+3}=\frac{7}{9}\)
Ta có:
\(\frac{x}{10}=\frac{7}{9}\Rightarrow x=\frac{7}{9}\times10=\frac{70}{9}\)
\(\frac{y}{4}=\frac{7}{9}\Rightarrow y=\frac{7}{9}\times4=\frac{28}{9}\)
\(\frac{z}{3}=\frac{7}{9}\Rightarrow z=\frac{7}{9}\times3=\frac{7}{3}\)