K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Phương trình tham số của đường thẳng  ∆  đi qua điểm M(1; -1; 2) và vuông góc với mặt phẳng ( α ): 2x – y + 2z + 12 = 0 là:

Δ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét điểm H(1 + 2t; -1 – t; 2 + 2t)  ∈   ∆

Ta có H ∈ ( α ) ⇔ 2(1 + 2t) + (1 + t) + 2(2 + 2t) + 12 = 0 ⇔ t = −19/9

Vậy ta được Giải sách bài tập Toán 12 | Giải sbt Toán 12

12 tháng 11 2021

giúp mình với mình đang cần gấp

 

12 tháng 11 2021

b: Thay x=-2 vào (d), ta được:

y=4+1=5

28 tháng 6 2017

Đáp án B

Đường thẳng AB:  qua   A 0 ; 4 ; 1 vtcp   u → = AB → = − 1 ; − 2 ; − 2 ⇒ AB : x = t y = 4 + 2 t z = 1 + 2 t

Gọi H là hình chiếu vuông góc của điểm M trên đường thẳng AB.

H là trung điểm của MM’ nên  M ' − 19 9 ; 13 9 ; − 8 9 .

Vậy tổng tọa độ của điểm M’ là:  − 14 9 .

14 tháng 5 2019

Đáp án C

1 tháng 2 2019

30 tháng 11 2023

Bài 1:

\(y=\left(m-1\right)x^2+2mx-3m+1\)

\(=mx^2-x^2+2mx-3m+1\)

\(=m\left(x^2+2x-3\right)-x^2+1\)

Tọa độ điểm cố định mà (Pm) luôn đi qua là:

\(\left\{{}\begin{matrix}x^2+2x-3=0\\y=-x^2+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+3\right)\left(x-1\right)=0\\y=-x^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\\y=-x^2+1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3=0\\y=-x^2+1\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=0\\y=-x^2+1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=-\left(-3\right)^2+1=-9+1=-8\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-1^2+1=0\end{matrix}\right.\end{matrix}\right.\)

 

 

NV
6 tháng 1

Theo công thức trung điểm:

\(\left\{{}\begin{matrix}x_M=2x_B-x_A=5\\y_M=2y_B-y_A=6\end{matrix}\right.\) \(\Rightarrow M\left(5;6\right)\)

6 tháng 1

Để B là trung điểm của đoạn thẳng AM, ta cần tìm tọa độ của điểm M.

Theo định nghĩa, trung điểm của một đoạn thẳng là điểm nằm ở giữa hai đầu mút của đoạn đó. Ta áp dụng công thức trung điểm để tìm tọa độ của M.

Công thức trung điểm: M(xM, yM) là trung điểm của đoạn AB <=> (xM, yM) = ((xA + xB)/2, (yA + yB)/2).

Ứng với A(1; -2) và B(3; 2): xM = (1 + 3)/2 = 2, yM = (-2 + 2)/2 = 0.

Vậy tọa độ của điểm M là M(2; 0).

Đáp án đúng là: B. M(2; 0).

25 tháng 12 2018

Chọn C.

Với M(a, b,c) thì điểm đối xứng của M qua mặt phẳng (Oxy) là M’(a;b;- c).

Do đó, điểm đối xứng với điểm M(3;2;-1) qua mặt phẳng (Oxy) là M’(3;2;1).