K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2015

Từ   \(a=b+c\)   \(\Rightarrow\)  \(a-b-c=0\)    

Ta có:

\(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}=1\)

\(\Rightarrow\)  \(\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2=1\)

\(\Leftrightarrow\)  \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{bc}-\frac{1}{ac}-\frac{1}{ab}\right)=1\)

\(\Leftrightarrow\)  \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a}{abc}-\frac{b}{abc}-\frac{c}{abc}\right)=1\)

\(\Leftrightarrow\)  \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a-b-c}{abc}\right)=1\)

\(\Leftrightarrow\)  \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)

\(\Leftrightarrow\)  \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{c-c}{abc}\right)=1\)

7 tháng 10 2016
Áp dụng tính chất dãy tỷ số bằng nhau, ta có:
a/b=b/c=c/a=a+b+c/b+c+a=1

a/b=b/c=c/a=1

=>   a = b = c = 2013

Vậy b = 2013; c = 2013
 
 
7 tháng 10 2016

Áp dụng tính chất dãy tỷ số bằng nhau, ta có:
a/b=b/c=c/a=a+b+c/
b+c+a=1

a/b=b/c=c/a=1

=> a = b = c = 2003

Vậy b = 2003; c = 2003

 
 

Up ba, giải giúp mik dới !!!!!!!!!

25 tháng 12 2016

theo bài ra ta có:

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{2a}{2c}=\frac{a}{c}=\frac{a+b-a+b}{c+a-c+a}=\frac{2b}{2a}=\frac{b}{a}\)

=> \(\frac{a}{c}=\frac{b}{a}\)

=> a2= bc (đpcm)

vậy điều ngược lại hoàn toàn đúng