a) cho d: 2x-3y+12=0. Tìm ảnh của d qua phép tịnh tiến theo v = (4; -3) b) cho d : 2x+y-4=0 và A (3;1) ;B (-1;8) . Tìm ảnh d' của d qua phép tịnh tiến theo AB->
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
Do d' là ảnh của d qua phép tịnh tiến \(\Rightarrow\) d' cùng phương d
Phương trình d' có dạng: \(2x-y+c=0\)
Lấy \(A\left(0;-1\right)\) là 1 điểm thuộc d
\(T_{\overrightarrow{v}}\left(A\right)=A'\Rightarrow\left\{{}\begin{matrix}x'=0+2=2\\y'=-1+\left(-1\right)=-2\end{matrix}\right.\)
\(\Rightarrow A'\left(2;-2\right)\)
Thế vào pt d':
\(2.2-\left(-2\right)+c=0\Rightarrow c=-6\)
Vậy pt d' là: \(2x-y-6=0\)
Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc d \(\Rightarrow x+3y+1=0\) (1)
Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến nói trên thì \(M'\in d'\) với d' là ảnh của d
\(\left\{{}\begin{matrix}x'=x+3\\y'=y-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-3\\y=y'+2\end{matrix}\right.\)
Thế vào (1):
\(x'-3+3\left(y'+2\right)+1=0\)
\(\Leftrightarrow x'+3y'+4=0\)
Vậy pt ảnh có dạng \(x+3y+4=0\)
a, Gọi M(3 ; 6) ∈ d. Gọi \(T_{\overrightarrow{v}}\left(M\right)=M'\)
⇒ \(\overrightarrow{MM'}=\overrightarrow{v}=\left(4;-3\right)\)
⇒ M' (7 ; 3)
\(T_{\overrightarrow{v}}\left(d\right)=d'\) ⇒ d' // d và d' đi qua M' (7 ; 3)
⇒ d' : 2x - 3y - 5 = 0
b, làm tương tự