K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 12 2020

Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc d \(\Rightarrow x+3y+1=0\) (1)

Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến nói trên thì \(M'\in d'\) với d' là ảnh của d

\(\left\{{}\begin{matrix}x'=x+3\\y'=y-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-3\\y=y'+2\end{matrix}\right.\)

Thế vào (1):

\(x'-3+3\left(y'+2\right)+1=0\)

\(\Leftrightarrow x'+3y'+4=0\)

Vậy pt ảnh có dạng \(x+3y+4=0\)

24 tháng 2 2019

Giải bài 3 trang 7 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 7 sgk Hình học 11 | Để học tốt Toán 11

c) Đường thẳng d có vecto pháp tuyến là n(1;-2) nên 1 vecto chỉ phương của d là(2; 1)

=> Vecto v không cùng phương với vecto chỉ phương của đường thẳng d

=> Qua phép tịnh tiến v biến đường thẳng d thành đường thẳng d’ song song với d.

Nên đường thẳng d’ có dạng : x- 2y + m= 0

Lại có B(-1; 1) d nên B’(-2;3) d’

Thay tọa độ điểm B’ vào phương trình d’ ta được:

-2 -2.3 +m =0 ⇔ m= 8

Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0

22 tháng 10 2018

Gọi M′(x′;y′) ∈ d′ là ảnh của M(x,y) ∈ d qua phép tịnh tiến theo vecto  v → ( 2 ; 3 )

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do M(x,y) ∈ d nên

3x − 5y + 3 = 0

⇒ 3(x′−2) − 5(y′−3) + 3 = 0

⇔ 3x′ − 5y′ + 12 = 0 (d′)

Vậy M′(x′;y′) ∈ d′: 3x′ − 5y′ + 12 = 0

13 tháng 4 2019

Đáp án D

15 tháng 10 2022

Tọa độ A' là:

\(\left\{{}\begin{matrix}x=-2+3=1\\y=3-2=1\end{matrix}\right.\)

Lấy B(0;-2) thuộc (d)

=>Tọa độ B' là: \(\left\{{}\begin{matrix}x=0+3=3\\y=-2-2=-4\end{matrix}\right.\)

Thay x=3 và y=-4 vào (d'): 4x+3y+c=0, ta được:

c+12-12=0

=>c=0

(C): (x-3)^2+(y-1)^2=9

=>R=3 và I(3;1)

=>I'(5;-5)

=>(C'): (x-5)^2+(y+5)^2=9

12 tháng 5 2019

Đáp án B

NV
2 tháng 8 2021

Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc \(\Delta\Rightarrow x+2y-1=0\) (1)

Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in\Delta'\)

\(\left\{{}\begin{matrix}x'=x+1\\y'=y-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-1\\y=y'+1\end{matrix}\right.\)

Thế vào (1):

\(x'-1+2\left(y'+1\right)-1=0\)

\(\Leftrightarrow x'+2y'=0\)

Hay phương trình \(\Delta'\) có dạng: \(x+2y=0\)

2 tháng 8 2021

Em cảm ưn ạ