Cho hình phẳng giới hạn bởi các đường y = tan x , y = 0 ; x = 0 ; x = π 4 quay xung quanh trục Ox. Tính thể tích vật thể tròn xoay được sinh ra
A. π ln 2 2
B. π ln 3 4
C. π 4
D. π ln 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(V=\pi \int ^4_1[x^{\frac{1}{2}}e^{\frac{x}{2}}]^2dx=\pi \int ^4_1(xe^x)dx\)
\(=\pi \int ^4_1xd(e^x)=\pi (|^4_1xe^x-\int ^4_1e^xdx)\)
\(=\pi |^4_1(xe^x-e^x)=\pi (3e^4)=3\pi e^4\)
2.
\(V=\pi \int ^1_0(x\sqrt{\ln (x^3+1)})^2dx=\pi \int ^1_0x^2\ln (x^3+1)dx\)
\(=\frac{1}{3}\pi \int ^1_0\ln (x^3+1)d(x^3+1)\)
\(=\frac{1}{3}\pi \int ^2_1ln tdt=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1td(\ln t))\)
\(=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1dt)=\frac{1}{3}\pi |^2_1(t\ln t-t)=\frac{1}{3}\pi (2\ln 2-1)\)
Đáp án D
Phương trình hoành độ giao điểm của (C)và trục Ox là ln x = 0 ⇔ x = 1
Diện tích hình phẳng (H) là S = π . ∫ 1 k lnx d x = π . ∫ 1 k lnx d x . Đặt u = ln x d v = d x ⇔ d u = d x x v = x .
⇒ ∫ 1 1 ln x d x = x . ln x 1 k - ∫ 1 k d x = x . ln x - x 1 k = k . ln k - k + 1 = 1 ⇔ ln k = 1 ⇔ k = e .
Đáp án A