Cho a+b=m ; ab = n
Tính
a. a^2 + b^2
b. a^3+b^3
c. a^4+b^4
d . a^5 + b^5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Nếu như có số tự nhiên k (kEN)sao cho (a +b) = m.k
2.________________________________(a - b)______
3_________________________________(a + b + c) = m.k
Chỉ có thể đưa ra ví dụ thôi chứ đây đã là kiến thức cơ bản r nhé bn.
Áp dụng công thức
- Tất cả các số trong 1 tổng đều chia hết cho cùng 1 số thì cả tổng đó sẽ chia hết cho số đó , chỉ cần 1 số ko chia hết thì cả tổng đó cũng sẽ ko chia hết
1.
\(A\subset B\Leftrightarrow\left\{{}\begin{matrix}2m-1\le-1\\2m+3\ge1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\le0\\m\ge-1\end{matrix}\right.\) \(\Rightarrow-1\le m\le0\)
\(B\subset A\Leftrightarrow\left\{{}\begin{matrix}-1\le2m-1\\2m+3\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge0\\m\le-1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn yêu cầu
\(A\cap B\) nhưng bằng cái gì? Chỗ này đề thiếu
2.
a.
\(B\subset A\Leftrightarrow\left\{{}\begin{matrix}-4\le m-7\\m\le3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge3\\m\le3\end{matrix}\right.\) \(\Leftrightarrow m=3\)
b.
\(A\cup B=A\Leftrightarrow B\subset A\Leftrightarrow\left\{{}\begin{matrix}m\ge-3\\m\le1\\-4\le-3\end{matrix}\right.\) \(\Rightarrow-3\le m\le1\)
c.
\(A\backslash B=\varnothing\Leftrightarrow A\subset B\Leftrightarrow\left\{{}\begin{matrix}m-1< 5\\m-1\ge3\end{matrix}\right.\) \(\Rightarrow4\le m< 6\)
Bài 1:
Để A giao B bằng rỗng thì \(\left[{}\begin{matrix}m+3< -3\\2m-1>6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< -6\\m>\dfrac{7}{2}\end{matrix}\right.\)
a. a2 +b2 = (a+b)2 - 2ab = m2 - 2n
b. a3 + b3 = (a+b)3 - 3ab(a+b) = m3 -3mn = m(m2 - 3n)
c. a4 + b4 = (a+b)4 - 4ab[(a+b)2 - 2ab] -16a2b2 = m4 - 4n(m2 -2n) -16n2
d. a5 + b5 = (a+b)(a4 - a3b + a2b2 - ab3 +b4) = (a+b)[ (a2 + b2)2 - a2b2 - a3b - ab3]
= (a+b)[ (a2 + b2)2 - ab( ab + a2 + b2) = (a+b)[ (a2 + b2)2 - ab(a+b)2 - a2b2 ]
= m[ (m2 - 2n)2 - m2n - n2 ]
chắc đúng nhỉ ??