K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

7 tháng 11 2021

\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)

19 tháng 5 2022

a) A = x2 + 4x - 2 = x2 + 4x + 4 - 6 = (x + 2)2 - 6

(x + 2)2 ≥ 0 => A ≥ -6 => GTNN của A là -6, xảy ra khi x = 2

19 tháng 5 2022

`a)A=x^2+4x-2`

   `A=x^2+4x+4-6=(x+2)^2-6`

Vì `(x+2)^2 >= 0 AA x`

`<=>(x+2)^2-6 >= -6 AA x`

   Hay `A >= -6 AA x`

Dấu "`=`" xảy ra`<=>(x+2)^2=0<=>x=-2`

Vậy `GTN N` của `A` là `-6` khi `x=-2`

________________________________________________

`b)B=2x^2-4x+3`

   `B=2(x^2-2x+3/2)`

   `B=2(x^2-2x+1)+1=2(x-1)^2+1`

Vì `2(x-1)^2 >= 0 AA x`

`<=>2(x-1)^2+1 >= 1 AA x`

  Hay `B >= 1 AA x`

Dấu "`=`" xảy ra `<=>(x-1)^2=0<=>x=1`

Vậy `GTN N` của `B` là `1` khi `x=1`

__________________________________________________

`c)C=x^2+y^2-4x+2y+5`

   `C=x^2-4x+4+y^2+2y+1`

   `C=(x-2)^2+(y+1)^2`

Vì `(x-2)^2 >= 0 AA x` và `(y+1)^2 >= 0 AA y`

  `=>(x-2)^2+(y+1)^2 >= 0 AA x,y`

 Hay `C >= 0 AA x,y`

Dấu "`=`" xảy ra`<=>{((x-2)^2=0),((y+1)^2=0):}`

                         `<=>{(x=2),(y=-1):}`

Vậy `GTN N` của `C` là `0` khi `x=2`,y=-1

NV
19 tháng 9 2021

\(A=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)

\(A_{min}=3\) khi \(x=-2\)

\(B=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)

\(B_{min}=1\) khi \(x=10\)

\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(C_{min}=2\) khi \(\left(x;y\right)=\left(-3;1\right)\)

13 tháng 8 2021

a,\(A=2\sqrt{x^2+x+\dfrac{1}{2}}=2\sqrt{x^2+x+\dfrac{1}{4}+\dfrac{1}{4}}=2\sqrt{\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}}\)

\(=\sqrt{4\left(x+\dfrac{1}{2}\right)^2+1}\ge1\) dấu"=" xảy ra<=>x=-1/2

\(B=\sqrt{2\left(x^2-2x+\dfrac{5}{2}\right)}=\sqrt{2\left[x^2-2x+1+\dfrac{3}{2}\right]}\)

\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\) dấu"=" xảy ra<=>x=1

\(C=\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\ge\dfrac{-2}{-\sqrt{2}}=\sqrt{2}\) dấu"=" xảy ra<=>x=1

\(D=x-2\sqrt{x+2}\ge-2\) dấu"=" xảy ra<=>x=-2

 

13 tháng 8 2021

Câu D≥-3 Dấu"=" xảy ra khi x=-1

b: \(B=x^3-8y^3-x^3+4x-4x+8y^3+2021=2021\)

8 tháng 11 2021

Phân tích đa thức sau thành phân tử 

a, 4x³ - 10x² + 2x

b, x² - 3x + 2

Giúp mk vs m.n

21 tháng 7 2018

BÀI 1:

Ta có:   \(VT=\left(7x+1\right)^2-\left(x+7\right)^2\)

                    \(=\left(7x+1+x+7\right)\left(7x+1-x-7\right)\)

                    \(=\left(8x+8\right)\left(6x-6\right)\)

                   \(=8\left(x+1\right).6\left(x-1\right)\)

                  \(=48\left(x^2-1\right)=VP\)  (đpcm)

Bài 2:

         \(16x^2-\left(4x-5\right)^2=15\)

\(\Leftrightarrow\)\(16x^2-16x^2+40x-25=15\)

\(\Leftrightarrow\)\(40x=40\)

\(\Leftrightarrow\)\(x=1\)

Vậy...

Bài 3:

\(A=x^2+2x+3=\left(x+1\right)^2+2\ge2\)

Vậy MIN A = 2  khi  x = -1

23 tháng 4 2022

\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\) 

b.\(B=7-\left(x+3\right)^2\le7\forall x\)  " = " \(\Leftrightarrow x=-3\)

c.\(C=\left|2x-3\right|-13\ge-13\forall x\)  " = " \(\Leftrightarrow x=\dfrac{3}{2}\)

d.\(D=11-\left|2x-13\right|\le11\forall x\)  " = " \(\Leftrightarrow x=\dfrac{13}{2}\)

23 tháng 4 2022

:o

27 tháng 8 2021

`A=x^2-4x+y^2-8y+6`

`A=x^2-4x+4+y^2-8y+16-14`

`A=(x-2)^2+(y-4)^2-14`

VÌ `(x-2)^2+(y-4)^2>=0`

`=>(x-2)^2+(y-4)^2-14>=-14`

`=>A>=-14`

Dấu "=" xảy ra khi `x-2=0,y-4=0<=>{(x=2),(y=4):}`

A =|3x-4| + |5x-7| -x +2025

- Nếu x < \(\dfrac{4}{3}\):

\(\Rightarrow\) \(\left\{{}\begin{matrix}3x-4< 0\\5x-7< 0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\text{|}3x-4\text{|}=-3+4\\\text{|}5x-7\text{|}=-5x+7\end{matrix}\right.\) 

\(\Rightarrow\) \(A=-3x+4-5x+7-x+2025\) 

Vì x \(< \dfrac{4}{3}\) \(\Rightarrow\) \(9x< 12\) \(\Rightarrow\) \(-9x>-12\) 

\(\Rightarrow\) \(-9x+2036>2024\) 

\(\Rightarrow\) A \(>2024\) ( Loại)

Nếu \(\dfrac{4}{3}\) \(\le\) x \(< \dfrac{7}{5}\) 

\(\Rightarrow\) \(\left\{{}\begin{matrix}3x-4>0\\5x-7< 0\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\text{|}3x-4\text{|}=3x-4\\\text{|}5x-7\text{|}=-5x+7\end{matrix}\right.\) 

\(\Rightarrow\) A= \(-3x-4-5x+7-x+2025\) 

       =   \(-3x+2028\) 

Ta có: \(\dfrac{4}{3}\) \(\le x\) \(\Rightarrow\) \(-3x\) \(>\dfrac{-21}{5}\) 

\(\Rightarrow\) 2024 \(\ge\) \(-3x+2028>\dfrac{10119}{5}\) ( loại)

Nếu x :

\(\ge\dfrac{7}{5}\\ \Rightarrow\left\{{}\begin{matrix}3x-4>0\\5x-7>0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\text{|}3x-4\text{|}=3x-4\\\text{|}5x-7\text{|}=5x-7\end{matrix}\right.\\ \Rightarrow A=3x-4+5x-7-x+2025\) 

  \(=7x+2014\) 

Vì \(x\ge\dfrac{7}{5}\) \(\Rightarrow\) \(7x\ge\dfrac{49}{5}\) 

\(\Rightarrow\) \(7x+2014\) \(\ge\dfrac{19}{5}+2014=\dfrac{10119}{5}\) 

\(\Rightarrow\) A \(\ge\) \(\dfrac{10119}{5}\) (  t/m)

Vậy A đạt GTNN khi A bằng \(\dfrac{10119}{5}\)

Dấu "=" xảy ra khi  \(x=\dfrac{7}{5}\)