câu 1 cho biểu thức
p=\(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\) với x>0; \(x\ne1\)
a)rút gọn p
b)tính giá trị của p khi x =\(7-4\sqrt{3}\)
c)tìm x để p có giá trị lớn nhất
câu 2 cho hàm số y=f(x)=(m-1)x+2m-3
a)biết f(1)=2 tính f(2)
b)biết f(-3)=0 ; hàm số f(x) là hàm số đồng biến hay nghịch biến
a, P=\(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)
\(P=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\dfrac{\left(1-x\right)^2}{2}\)
\(P=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(1-x\right)^2}{2}\)
\(P=\dfrac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(x-1\right)^2}{2}\)
\(P=\dfrac{-\sqrt{x}\left(x-1\right)}{\sqrt{x}+1}=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=-\sqrt{x}\left(\sqrt{x}-1\right)=\sqrt{x}-x\)b,x=\(7-4\sqrt{3}=4-2.2\sqrt{3}+3=\left(2-\sqrt{3}\right)^2\)
Thay vào ta có \(P=\sqrt{\left(4-\sqrt{3}\right)^2}-\left(7-4\sqrt{3}\right)\)
\(P=\left|4-\sqrt{3}\right|-7-4\sqrt{3}=4-\sqrt{3}-7+4\sqrt{3}\)
\(P=-3+3\sqrt{3}\)
Câu 2:
a: f(1)=2
=>m-1+2m-3=2
=>3m=6
=>m=2
=>f(x)=x+1
=>f(2)=2+1=3
b: f(-3)=0
=>-3m+3+2m-3=0
=>m=0
=>f(x)=-x-3
=>f(x) nghịch biến