K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ab+ac+bc

=1/2[(a+b+c)^2-(a^2+b^2+c^2)]

=1/2(9-29)=-10

=>a^2b^2+b^2c^2+a^2c^2=(ab+bc+ac)^2-2abc(a+b+c)

=(-10)^2-2*11*3=34

a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)=3*(29+10)=117

=>a^3+b^3+c^3=150

a^5+b^5+c^5

=(a^3+b^3+c^3)(a^2+b^2+c^2)-(a^3b^2+a^2c^2+a^2b^3+b^3c^2+a^2b^3+b^2c^3)

=(a^3+b^3+c^3)(a^2+b^2+c^2)-[(a^2b^2+b^2c^2+c^2a^2)(a+b+c)-abc(ab+ac+bc)]

=150*29-[34*3-11*(-10)]

=4138

19 tháng 8 2017

dạng này thì chỉ có quy đồng thôi nhé mặc dù quy đồng chưa ra

10 tháng 3 2019

4 tháng 3 2021

giả sử a\(\ge\)b

Khi đó \(\dfrac{a-b}{2}>0\)

Vì a<b+c với mọi c>0 nên \(c=\dfrac{a-b}{2}\)

Ta có: \(a\le b+\dfrac{a-b}{2}\) hay a<b ( mâu thuẫn )

=> giả sử a\(\ge\)b là sai 

Vậy \(a\le b\)