cho phương trình ax+by=ab (a,b là STN khác 0; (a,b)=1
Phương trình trên có nghiệm nguyên dương hay không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ phương trình a x + b y = c a ' x + b ' y = c ' có vô số nghiệm khi d: ax + by = c và d’: a’x + b’y = c’ trùng nhau, suy ra hệ phương trình có vô số nghiệm ⇔ a a ' = b b ' = c c '
Đáp án: B
Ta có với a ≠ 0; b ≠ 0 thì ax + by = c ⇔ by = −ax + c ⇔ y = − a b x + c b
Nghiệm của phương trình được biểu diễn bởi x ∈ R y = − a b x + c b
Đáp án: A
Ta có: a x + b = 0 ⇔ x = - b a
Và c x + d = 0 ⇔ x = - d c
Theo giả thiết ta có: - b a < - d c ⇔ b a > d c
Phương trình bậc nhất hai ẩn ax + by = c luôn có vô số nghiệm
Tập nghiệm của phương trình được biểu diễn bởi đường thẳng d: ax + by = x
Ta có với a ≠ 0; b ≠ 0 thì ax + by = c ⇔ by = −ax + c ⇔ y = − a b x + c b
Nghiệm của phương trình là S = x ; − a b x + c b | x ∈ ℝ
Vậy cả A, B, C đều đúng
Đáp án: D
Lời giải:
Giả sử pt có nghiệm $(x,y)$ nguyên dương.
$ax+by=ab\vdots a$
$\Rightarrow by\vdots a$. Mà $(a,b)=1$ nên $y\vdots a$
$ax+by=ab\vdots b\Rightarrow ax\vdots b\Rightarrow x\vdots b$
Đặt $y=am, x=bn$ với $m,n$ nguyên.
Vì $x,y$ nguyên dương, $a,b$ lại là stn khác 0 nên $m,n$ nguyên dương.
Khi đó: $ab=ax+by=abn+bam=ab(m+n)$
$\Rightarrow 1=m+n$
Vì $m,n$ nguyên dương nên $m+n\geq 2$. Do đó việc $m+n=1$ vô lý.
Vậy điều giả sử là sai. Tức là không tồn tại $x,y$ nguyên dương.
có