K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

Ta có với a ≠  0; b ≠  0 thì ax + by = c ⇔  by = −ax + c  ⇔ y = − a b x + c b

Nghiệm của phương trình được biểu diễn bởi  x ∈ R y = − a b x + c b

Đáp án: A

25 tháng 8 2018

Đáp án A

30 tháng 3 2017

Đáp án A

27 tháng 3 2020

Cách này của mình là suy đoán thui nha

Từ HPT trên: \(\frac{x}{a-q}+\frac{y}{b-q}+\frac{z}{c-q}=\frac{x}{a-p}+\frac{y}{b-p}+\frac{z}{c-p}\)

\(\Leftrightarrow\left(p-q\right)\left[\frac{x}{\left(a-p\right)\left(a-q\right)}+\frac{y}{\left(b-p\right)\left(b-q\right)}+\frac{z}{\left(c-q\right)\left(c-p\right)}\right]=0\)

Chia TH:

TH1:p=q

Tương tự p=r thì cũng thu về p=q=r

TH2: nguyên cái trong ngoặc vuông

Tương đương với: \(ax+by+cz=r\left(x+y+z\right)\)

Tương tự: \(\hept{\begin{cases}ax+by+cz=p\left(x+y+z\right)\\ax+by+cz=q\left(x+y+z\right)\end{cases}}\)

Cũng thu đc p=q=r

Do đó từ 2 TH cũng thu về PT:

\(\frac{x}{a-q}+\frac{y}{b-q}+\frac{z}{c-q}=1\)

Rồi vậy không biết làm tiếp :D

27 tháng 3 2020

À, xin lỗi, mình đánh bị thiếu điều kiện, mình sửa lại rồi đó

Câu 1: Trên cùng một mặt phẳng toạ độ Oxy, đồ thị của hai hàm số y = \(\frac{3}{2}x-2\) và y = \(-\frac{1}{2}x+2\) cắt nhau tại điểm M cso toạ độ là: A. ( 1; 2) B. ( 2;1) C. ( 0;-2) D. ( 0;2) Câu 2: Trong các phương trình sau, phương trình nào là phương trình bậc nhất hai ẩn x, y: A. ax + by = c ( a, b, c \(\in\) R ) B. ax + by = c ( a, b, c \(\in\) R, c \(\ne\) 0) C. ax + by = c ( a, b, c \(\in\) R, b \(\ne\)0, c \(\ne\) 0) D. A, B, C đều...
Đọc tiếp

Câu 1: Trên cùng một mặt phẳng toạ độ Oxy, đồ thị của hai hàm số y = \(\frac{3}{2}x-2\) và y = \(-\frac{1}{2}x+2\) cắt nhau tại điểm M cso toạ độ là:

A. ( 1; 2)

B. ( 2;1)

C. ( 0;-2)

D. ( 0;2)

Câu 2: Trong các phương trình sau, phương trình nào là phương trình bậc nhất hai ẩn x, y:

A. ax + by = c ( a, b, c \(\in\) R )

B. ax + by = c ( a, b, c \(\in\) R, c \(\ne\) 0)

C. ax + by = c ( a, b, c \(\in\) R, b \(\ne\)0, c \(\ne\) 0)

D. A, B, C đều đúng.

Câu 3: Cho hàm số \(y=\frac{m+2}{m^2+1}x+m-2\). Tìm m để hàm số nghịch biến, ta có kết quả sau:

A. m > -2

B. m \(\ne\pm1\)

C. m < -2

D. m \(\ne\) -2

Câu 4: Đồ thị hàm số y = ax + b ( a \(\ne\) 0) là:

A. Một đường thẳng đi qua gốc toạ độ

B. Một đường thẳng đi qua 2 điểm M ( b;0) và N ( 0;\(-\frac{b}{a}\))

C. Một đường cong Parabol

D. Một đường thẳng đi qua 2 điểm A( 0;b) và B(\(-\frac{b}{a}\);0)

Câu 5: Nghiệm tổng quát của phương trình: -3x + 2y =3 là:

A. \(\left\{{}\begin{matrix}x\in R\\y=\frac{3}{2}x+1\end{matrix}\right.\)

B. \(\left\{{}\begin{matrix}x=\frac{2}{3}y-1\\y\in R\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

D. Có hai câu đúng

Câu 6: Cho 2 đường thẳng y = ( m+1)x - 2k ( m \(\ne\) -1) và y = ( 2m - 3)x + k + 1 (m \(\ne\) \(\frac{3}{2}\)). Hai đường thẳng trên trùng nhau khi:

A. m = 4 hay k = \(-\frac{1}{3}\)

B. m = 4 và k = \(-\frac{1}{3}\)

C. m = 4 và k \(\in\) R

D. k = \(-\frac{1}{3}\)và k \(\in\) R

Câu 7: Nghiệm tổng quát của phương trình: 20x + 0y = 25

A. \(\left\{{}\begin{matrix}x=1,25\\y=1\end{matrix}\right.\)

B. \(\left\{{}\begin{matrix}x=1,25\\y\in R\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}x\in R\\y\in R\end{matrix}\right.\)

D. A, B đều đúng

Câu 8: Số nghiệm của phương trình: ax + by = c ( a, b, c \(\in\) R; a \(\ne\) 0) hoặc ( b \(\ne\) 0) là:

A. Vô số

B. 0

C. 1

D. 2

Câu 9: Cho phương trình: \(x^2-2x+m=0\). Phương trình phân biệt thì:

A. m > 1

B. m > -1

C. m < 1

D. A, B, C đều đúng

Câu 10: Cho hệ phương trình \(\left\{{}\begin{matrix}ax+3y=4\\x+by=-2\end{matrix}\right.\) với giá trị nào của a,b để hệ phương trình có cặp nghiệm ( -1;2)

A. \(\left\{{}\begin{matrix}a=2\\b=\frac{1}{2}\end{matrix}\right.\)

B. \(\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=2\\b=-\frac{1}{2}\end{matrix}\right.\)

D. \(\left\{{}\begin{matrix}a=-2\\b=-\frac{1}{2}\end{matrix}\right.\)

0
6 tháng 9 2019

a) 3x – y = 2 (1)

⇔ y = 3x – 2.

Vậy phương trình có nghiệm tổng quát là (x; 3x – 2) (x ∈ R).

Đường thẳng biểu diễn tập nghiệm của phương trình (1) là đường thẳng y = 3x – 2 (Hình vẽ).

   + Tại x = 2/3 thì y = 0 ⇒ đường thẳng y = 3x – 2 đi qua điểm (2/3 ; 0).

   + Tại x = 0 thì y = -2 ⇒ đường thẳng y = 3x – 2 đi qua điểm (0; -2).

Vậy đường thẳng y = 3x – 2 là đường thẳng đi qua điểm (2/3 ; 0) và (0; -2).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) x + 5y = 3 (2)

⇔ x = 3 – 5y

Vậy phương trình có nghiệm tổng quát là (3 – 5y; y) (y ∈ R).

Đường thẳng biểu diễn tập nghiệm của (2) là đường thẳng x + 5y = 3.

   + Tại y = 0 thì x = 3 ⇒ Đường thẳng đi qua điểm (3; 0).

   + Tại x = 0 thì y=3/5 ⇒ Đường thẳng đi qua điểm (0; 3/5).

Vậy đường thẳng x + 5y = 3 là đường thẳng đi qua hai điểm (3; 0) và (0; 3/5).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) 4x – 3y = -1

⇔ 3y = 4x + 1

⇔ Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có nghiệm tổng quát là  (x;4/3x+1/3)(x ∈ R).

Đường thẳng biểu diễn tập nghiệm phương trình là đường thẳng 4x – 3y = -1.

   + Tại x = 0 thì y = 1/3

Đường thẳng đi qua điểm (0;1/3) .

   + Tại y = 0 thì x = -1/4

Đường thẳng đi qua điểm (-1/4;0) .

Vậy đường thẳng 4x – 3y = -1 đi qua (0;1/3) và  (-1/4;0).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) x + 5y = 0

⇔ x = -5y.

Vậy nghiệm tổng quát của phương trình là (-5y; y) (y ∈ R).

Đường thẳng biểu diễn nghiệm của phương trình là đường thẳng x + 5y = 0.

   + Tại x = 0 thì y = 0 ⇒ Đường thẳng đi qua gốc tọa độ.

   + Tại x = 5 thì y = -1 ⇒ Đường thẳng đi qua điểm (5; -1).

Vậy đường thẳng x + 5y = 0 đi qua gốc tọa độ và điểm (5; -1).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

e) 4x + 0y = -2

⇔ 4x = -2 ⇔ Giải bài tập Toán lớp 9 | Giải Toán lớp 9

Phương trình có nghiệm tổng quát (-0,5; y)(y ∈ R).

Đường thẳng biểu diễn tập nghiệm là đường thẳng x = -0,5 đi qua điểm (-0,5; 0) và song song với trục tung.

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

f) 0x + 2y = 5

Giải bài tập Toán lớp 9 | Giải Toán lớp 9

Phương trình có nghiệm tổng quát (x; 2,5) (x ∈ R).

Đường thẳng biểu diễn tập nghiệm là đường thẳng y = 2,5 đi qua điểm (0; 2,5) và song song với trục hoành.

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

21 tháng 9 2015

Giả sử rằng \(\left(x,y\right)\) là nghiệm nguyên của phương trình \(ax+by=c.\) Suy ra \(a\left(x+y\right)+y\left(b-a\right)=c.\) Vì \(b-a\vdots c\to a\left(x+y\right)\vdots c\). Mà \(a,c\) là hai số nguyên tố cùng nhau nên \(x+y\vdots c.\)