cho\(\Delta\)ABC , tia phân giác \(\widehat{A}\) cắt ABC tại D. tính \(\widehat{ADC}\) biết rằng:
a)\(\widehat{B}=70^o;\widehat{c}=30^o\)
b)\(\widehat{B}-\widehat{c}=40^o\)
các bn giúp mk nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
Bài giải
a, Ta có : Tổng 3 trong một tam giác bằng 1800
=> \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
Hay : \(\widehat{A}=180^0-\left(\widehat{B}+\widehat{C}\right)\)
\(\Rightarrow\widehat{A}=180^0-\left(70^0+30^0\right)\)
\(\Rightarrow\widehat{A}=80^0\)
Mặt khác : tia phân giác của góc A cắt ABC tại D
\(\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{80^0}{2}=40^0\)
Ta có : \(\widehat{ADC}=180^0-\left(\widehat{DAC}+\widehat{C}\right)\)
\(\Rightarrow\widehat{ADC}=180^0-\left(40^0+30^0\right)\)
\(\Rightarrow\widehat{ADC}=110^0\)
Ta có
góc ADC=góc DAB+ góc B (theo tính chất góc ngoài của tam giác)
góc ADB= góc DAC + góc C
=> góc ADC- góc ADB=góc B+ góc DAB-(góc C+ góc DAC)
Vì AD là tia phân giác của góc A
=> góc DAB= góc DAC
=>góc ADC- góc ADB=gocsB-góc C=40 độ
mà góc ADC và góc ADB là 2 góc kề bù
=> góc ADC+góc ADB=180 độ
=> góc ADC=(180 độ +40 độ):2=110 độ
KL
a) ∆ADB và ∆ ACD có:
\(\widehat{B}\) =\(\widehat{C}\)(gt) (1)
\(\widehat{A1}\)=\(\widehat{A2}\)(AD là tia phân giác)
Nên \(\widehat{D1}\)=\(\widehat{D2}\)
AD cạnh chung.
Do đó ∆ADB=∆ADC(g.c.g)
b) ∆ADB=∆ADC(câu a)
Suy ra AB=AC .
a Xét \(\Delta ADB\) và \(\Delta ADC\) có :
AD : cạnh chung
\(\widehat{BAD}=\widehat{CAD}\) (gt)
Ta có : \(\widehat{BDA}+\widehat{DAB}+\widehat{ABD}=\widehat{CDA}+\widehat{DAC}+\widehat{ACD}\)
\(\Rightarrow\widehat{BDA}=\widehat{CDA}\)
\(\Rightarrow\Delta ADB=\Delta ADC\) (g . c . g)
b Vì \(\Delta ADB=\Delta ADC\)
\(\Rightarrow\) AB = AC
Ta có \(\widehat{A}+\widehat{ABC}+\widehat{C}=180^0\Rightarrow180^0-3\widehat{C}+\widehat{C}=180^0-70^0=110^0\)
\(\Rightarrow2\widehat{C}=70^0\Rightarrow\widehat{C}=35^0\Rightarrow\widehat{A}=180^0-3\cdot35^0=75^0\)
Ta có BE là p/g nên \(\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC}=35^0\)
Mà \(ED//BC\) nên \(\widehat{B_2}=\widehat{E_2}=35^0\left(so.le.trong\right)\left(1\right)\)
Ta có \(ED//BC\Rightarrow\widehat{E_1}=\widehat{C}=35^0\left(đồng.vị\right)\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\widehat{E_1}=\widehat{E_2}\left(=35^0\right)\)
Vậy ...
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{B}+\widehat{C}=180^o-\widehat{A}=110^o\)
\(\hept{\begin{cases}\widehat{B_2}=\frac{1}{2}\widehat{B}\\\widehat{C_1}=\frac{1}{2}\widehat{C}\end{cases}\Rightarrow\widehat{B_2}+\widehat{C_1}=\frac{1}{2}.110^o=55^o\Rightarrow\widehat{BIC}=180^o-\left(\widehat{B_2}+\widehat{C_1}\right)=125^o}\)
Ta có: \(\widehat{C_2}+\widehat{C_3}+\widehat{C_1}+\widehat{C_4}=180^o\)
\(\hept{\begin{cases}\widehat{C_1}=\widehat{C_2}\\\widehat{C_3}=\widehat{C_4}\end{cases}\Rightarrow\widehat{C_2}+\widehat{C_3}=\frac{180^o}{2}=90^o\Rightarrow\widehat{ICK}=90^o}\)
Suy ra \(\widehat{BIC}=\widehat{ICK}+\widehat{BKC}\Rightarrow\widehat{BKC}=125^o-90^o=35^o\)
a: \(\widehat{BAC}=180^0-70^0-30^0=80^0\)
=>\(\widehat{CAD}=40^0\)
\(\widehat{ADC}=180^0-40^0-30^0=110^0\)
b: \(\widehat{B}-\widehat{C}=40^0\)
nên \(\widehat{B}=\widehat{C}+40^0\)
Ta có: \(\widehat{ABD}+\widehat{ADB}+\widehat{BAD}=\widehat{ACD}+\widehat{ADC}+\widehat{CAD}\)
\(\Leftrightarrow\widehat{C}+40^0+\widehat{ADB}=\widehat{C}+\widehat{ADC}\)
\(\Leftrightarrow\widehat{ADB}-\widehat{ADC}=-40^0\)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)
nên \(-2\cdot\widehat{ADC}=\dfrac{-40^0-180^0}{2}=-110^0\)
hay \(\widehat{ADC}=55^0\)