K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 2 2020

\(\left\{{}\begin{matrix}\widehat{BAC}=60^0\\AB=AC\end{matrix}\right.\) \(\Rightarrow\Delta ABC\) đều \(\Rightarrow AB=BC\)

Tương tự ta có \(\Delta ABD\) đều \(\Rightarrow BD=AB=BC\)

\(\Rightarrow\Delta ACD=\Delta BCD\left(c.c.c\right)\)

\(\Rightarrow AJ=BJ\) (cùng là trung tuyến của 2 tam giác bằng nhau)

\(\Rightarrow\Delta ABJ\) cân tại J

\(\Rightarrow IJ\perp AB\)

Dữ kiện \(\widehat{CAD}=90^0\) là ko cần thiết

P/s: quên vẽ hình

15 tháng 2 2020

Thế còn đáp án?

15 tháng 3 2021

Ủa bạn, đề hỏi góc giữa vectơ AB và IJ cơ mà?

17 tháng 4 2022

A.\(\dfrac{a\sqrt{6}}{3}\)

NV
17 tháng 4 2022

\(S_{\Delta ACD}=\dfrac{1}{2}AC.AD.sin\widehat{CAD}=\dfrac{a^2\sqrt{3}}{4}\)

\(V=\dfrac{AB.AC.AD}{6}.\sqrt{1+2cos90^0.cos60^0.cos120^0-cos^290^0-cos^260^0-cos^2120^0}=\dfrac{a^3\sqrt{2}}{12}\)

\(\Rightarrow d\left(B;\left(ACD\right)\right)=\dfrac{3V}{S}=\dfrac{a\sqrt{6}}{3}\)

31 tháng 3 2017

Hướng dẫn.

(h.3.21)

a)

=> AB ⊥ CD. b)

Suy ra

Ta có => AB ⊥ MN.

Chứng minh tương tự được CD ⊥ MN.


 

12 tháng 5 2018

Chọn D.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

3 tháng 10 2018

Đáp án A

15 tháng 12 2019

ĐÁP ÁN: A

8 tháng 12 2017

Đáp án D

Phương pháp

Sử dụng công thức tính nhanh thể tích khối tứ diện biết ba cạnh và ba góc cùng xuất phát từ một đỉnh:

23 tháng 11 2018