Biết \(\frac{b}{a}=3;\frac{c}{b}=7\)
Tính \(\frac{a+b}{b+c}\)
(giải thích rõ ràng)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\). Do đó \(\cos a = \sqrt {1 - {{\sin }^2}a} = \sqrt {1 - \frac{1}{3}} = - \frac{{\sqrt 6 }}{3}\)
Ta có: \(\cos \left( {a + \frac{\pi }{6}} \right) = \cos a\cos \frac{\pi }{6} - \sin a\sin \frac{\pi }{6} = - \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} - \frac{1}{{\sqrt 3 }}.\frac{1}{2} = - \frac{{\sqrt 3 + 3\sqrt 2 }}{6}\)
b) Vì \(\pi < a < \frac{{3\pi }}{2}\) nên \(\sin a < 0\). Do đó \(\sin a = \sqrt {1 - {{\cos }^2}a} = \sqrt {1 - \frac{1}{9}} = - \frac{{2\sqrt 2 }}{3}\)
Suy ra \(\tan a\; = \frac{{\sin a}}{{\cos a}} = \frac{{ - \frac{{2\sqrt 2 }}{3}}}{{ - \frac{1}{3}}} = 2\sqrt 2 \)
Ta có: \(\tan \left( {a - \frac{\pi }{4}} \right) = \frac{{\tan a - \tan \frac{\pi }{4}}}{{1 + \tan a\tan \frac{\pi }{4}}} = \frac{{\frac{{\sin a}}{{\cos a}} - 1}}{{1 + \frac{{\sin a}}{{\cos a}}}} = \frac{{2\sqrt 2 - 1}}{{1 + 2\sqrt 2 }} = \frac{{9 - 4\sqrt 2 }}{7}\)
Sửa đề \(D=\frac{a^3+3^3}{b^3+4^3}\)biết \(\frac{a+3}{a-3}=\frac{b+4}{b-4}\)
\(\Leftrightarrow\left(a+3\right)\left(b-4\right)=\left(a-3\right)\left(b+4\right)\)
\(\Leftrightarrow ab-4a+3b-12=ab+4a-3b-12\)
\(\Leftrightarrow8a=6b\)
\(\Leftrightarrow\frac{a}{6}=\frac{b}{8}\Leftrightarrow\frac{a}{3}=\frac{b}{4}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\)\(\Rightarrow a=3k,b=4k\)
\(\Rightarrow D=\frac{a^3+3^3}{b^3+4^3}=\frac{\left(3k\right)^3+3^3}{\left(4k\right)^3+4^3}\)
\(=\frac{3^3\left(k^3+1\right)}{4^3\left(k^3+1\right)}=\frac{3^3}{4^3}=\frac{27}{64}\)
\(\text{Ta có : }\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)
\(\Leftrightarrow\frac{3a+2b}{6}=\frac{a+b}{5}\)
\(\Leftrightarrow5\left(3a+2b\right)=6\left(a+b\right)\)
\(\Leftrightarrow15a+10b=6a+6b\)
\(\Leftrightarrow9a+4b=0\)
\(\Rightarrow a=b=0\)
Bài 1:suy ra 5*(44-x)=3*(x-12)
220-5x=3x-36
-5x-3x=-36-220
-8x =-256
x=32
Bài 2 :Đặt a/3=b/4=k
suy ra a=3k ; b=4k
Ta có a*b=48
suy ra 3k*4k=48
12k =48
k=4
suy ra a=3*4=12
b=4*4 =16
Bài 3: áp dụng tính chất dãy số bằng nhau ta được
a+b+c+d/3+5+7+9 = 12/24=0,5
suy ra a=1,5; b=2,5; c=3,5; d=4,
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\Leftrightarrow a^3=c^3=b^3\)
Ta có : \(a^3=b^3=c^3=abc\)
\(\frac{a^3}{abc}=\frac{abc}{abc}=1\Leftrightarrow\frac{a^3+b^3+c^3}{3abc}=\frac{3abc}{3abc}=1\)
Vậy \(P=1\)
Ta có :
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{15a-10b}{25}=\frac{6c-15a}{9}\)
\(=\frac{15a-10b+6c-15a}{25+9}=\frac{6c-10b}{34}=\frac{3c-5b}{17}=\frac{5b-3c}{2}\) = 0
=> a+b+c = 5a = - 50 => a = -10; b = -15 ; c = -25
Ta có :
\(\frac{a}{2}=\frac{b}{3};\frac{a}{4}=\frac{c}{9}\)
\(\Rightarrow\frac{a}{4}=\frac{b}{6}=\frac{c}{9}\)
\(\Rightarrow\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}\)
Áp dụng c/t tỉ lệ thức = nhau ta có :
\(\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}=\frac{a^3+b^3+c^3}{64+216+729}=\frac{-1009}{1009}=-1\)
Vậy a = -4 b = -6 c = -9
Bài 2: Mình nghĩ câu a là a+2b-3c=-20
a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5
a/2 = 5 => a = 2 . 5 = 10
b/3 = 5 => b = 5 . 3 = 15
c/4 = 5 => c = 5 . 4 = 20
Vậy a = 10; b = 15; c = 20
b) Ta có: a/2 = b/3 => a/10 = b/15
b/5 = c/4 => b/15 = c/12
=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7
a/10 = -7 => a = -7 . 10 = -70
b/15 = -7 => b = -7 . 15 = -105
c/12 = -7 => c = -7 . 12 = -84
Vậy a = -70; b = -105; c = -84.
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
\(\Leftrightarrow a^2c+b^2a+c^2b=b^2c+c^2a+a^2b\)
\(\Leftrightarrow\left(b-a\right)\left(c-a\right)\left(c-b\right)=0\)
\(\Leftrightarrow a=b;b=c;c=a\)
Làm nốt nhé
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
\(\Leftrightarrow a^2c+b^2a+c^2b=b^2c+c^2a+a^2b\)
\(\Leftrightarrow\left(b-a\right)\left(c-a\right)\left(c-b\right)=0\)
\(\Leftrightarrow a=b;b=c;c=a\)
Ta thấy : mỗi số hạng đều xuất hiện 2 lần và chúng đều bằng nhau.
Mà tổng của \(a+b+c=3\)
\(\Leftrightarrow a=1;b=1;c=1\)
Theo đề ta có b/a=3 => b=3a; c/b =7 => c=7b
Thay b=3a; c=7b vào biểu thức ta được
(a+3a)/ (b+7b)= 4a/8b
Mà b=3a=> 4a/8b= 4a/24a=1/6
Vậy (a+b)/(b+c)=1/6
( Đúng thì k nha)