\(Cho:a+b+c=2016;\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{2016}\)
Tính:\(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Xét a/b+c và c/a+b có:
\(\frac{a}{b+c}=\frac{1}{2}\Rightarrow b+c=2a\)
\(\frac{b}{c+a}=\frac{1}{2}\Rightarrow a+c=2b\)
\(\Leftrightarrow a+c-b+c=2b-2a\) \(\Leftrightarrow a-b=2b-2a\Leftrightarrow a=2b-2a+b=3b-2a\) \(\Leftrightarrow3c-2a-a=0\Leftrightarrow3c-3a=0\)\(\Leftrightarrow c=a\) (1)
Ta lại có:\(\frac{c}{a+b}=\frac{1}{2}\Leftrightarrow a+b=2c\)
\(\Rightarrow a+b-a-c=2c-2b\Leftrightarrow b-c=2c-2b\)
\(\Leftrightarrow b=2c-2b+c=3c-2b\)
\(\Leftrightarrow3c-2b-b=0\Leftrightarrow3c-3b=0\Leftrightarrow c=b\) (2)
Từ (1) và (2) \(\Rightarrow a=b=c\)
A+B
=a+b-5+b-c-9
=a+2b-c-14
C+D
=b-c-4-b+a
=-c+a-4
=>A+B<>C+D nha bạn
Vì \(a+b+c=2016\Rightarrow a=2016-\left(b+c\right);b=2016-\left(a+c\right);c=2016-\left(a+b\right)\)
Ta có:\(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(S=\frac{2016-\left(b+c\right)}{b+c}+\frac{2016-\left(a+c\right)}{a+c}+\frac{2016-\left(a+b\right)}{a+b}\)
\(S=\frac{2016}{b+c}-1+\frac{2016}{a+c}-1+\frac{2016}{a+b}-1\)
\(S=2016.\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)
\(S=2016.\frac{1}{2016}-3\)
\(S=-2\)