K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2023

Theo cột dọc:

 

Theo hàng ngang:

\(\begin{array}{l}P(x) - Q(x) = 6{x^3} + 8{x^2} + 5x - 2 - ( - 9{x^3} + 6{x^2} + 2x + 3)\\ = 6{x^3} + 8{x^2} + 5x - 2 + 9{x^3} - 6{x^2} - 2x - 3\\ = (6 + 9){x^3} + (8 - 6){x^2} + (5 - 2)x + ( - 2 - 3)\\ = 15{x^3} + 2{x^2} + 3x - 5\end{array}\)

P(x)-Q(x)

=6x^3+8x^2+5x-2+9x^3-6x^2-2x-3

=15x^3+2x^2+2x-5

\(P\left(x\right)-Q\left(x\right)=\left(6x^3+8x^2+5x-2\right)-\left(-9x^3+6x^2+3+2x\right)\)

                       \(=6x^3+8x^2+5x-2+9x^3-6x^2-3-2x\)

                       \(=6x^3+9x^3+8x^2-6x^2+5x-2x-2-3\)

                       \(=15x^3+2x^2+3x-5\)

 

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)

\(\begin{array}{l}P(x) = 5{x^3} + 2{x^4} - {x^2} + 3{x^2} - {x^3} - 2{x^4} - 4{x^3}\\ = \left( {2{x^4} - 2{x^4}} \right) + \left( {5{x^3} - {x^3} - 4{x^3}} \right) + \left( { - {x^2} + 3{x^2}} \right)\\ = 0 + 0 + 2{x^2}\\ = 2{x^2}\\Q(x) = 3x - 4{x^3} + 8{x^2} - 5x + 4{x^3} + 5\\ = \left( { - 4{x^3} + 4{x^3}} \right) + 8{x^2} + \left( {3x - 5x} \right) + 5\\ = 0 + 8{x^2} + ( - 2x) + 5\\ = 8{x^2} - 2x + 5\end{array}\)

b) P(1) = 2.12 = 2

P(0) = 2. 02 = 0

Q(-1) = 8.(-1)2 – 2.(-1) +5 = 8 +2 +5 =15

Q(0) = 8.02 – 2.0 + 5 = 5

HQ
Hà Quang Minh
Giáo viên
11 tháng 1

a)      Chỗ sai trong phương trình là: \(5 - x + 8 = 3x + 3x - 27\) (dòng thứ 2) vì khi phá ngoặc đã không đổi dấu của số 8.

Sửa lại:

\(\begin{array}{l}5 - \left( {x + 8} \right) = 3x + 3\left( {x - 9} \right)\\\,\,\,\,5 - x - 8 = 3x + 3x - 27\\\,\,\,\,\,\,\, - 3 - x = 6x - 27\\\,\,\,\, - x - 6x =  - 27 + 3\\\,\,\,\,\,\,\,\,\,\,\,\, - 7x =  - 24\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \left( { - 24} \right):\left( { - 7} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \frac{{24}}{7}\end{array}\)

Vậy phương trình có nghiệm \(x = \frac{{24}}{7}.\)

b)     Chỗ sai trong phương trình là: \(4x + 5x = 9 - 18\) (dòng thứ 3) vì khi chuyển \( - 18\) từ vế trái sang vế phải đã không đổi dấu thành \( + 18\).

Sửa lại:

\(\begin{array}{l}3x - 18 + x = 12 - \left( {5x + 3} \right)\\\,\,\,\,\,\,\,4x - 18 = 12 - 5x - 3\\\,\,\,\,\,\,\,4x + 5x = 9 + 18\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,9x = 27\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 27:9\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 3.\end{array}\)

Vậy phương trình có nghiệm \(x = 3.\)

17 tháng 9 2023

Theo cột dọc:

 

Theo hàng ngang:

\(\begin{array}{l}P(x) + Q(x) = 2{x^3} + \dfrac{3}{2}{x^2} + 5x - 2 + ( - 8){x^3} + 4{x^2} + 3x + 6\\ = (2 - 8){x^3} + (\dfrac{3}{2} + 4){x^2} + (5 + 3)x + ( - 2 + 6)\\ =  - 6{x^3} + \dfrac{{11}}{2}{x^2} + 8x + 4\end{array}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

Ta có: \(\begin{array}{l}2{\rm{x}} + 5 = 16\\2{\rm{x}} = 16 - 5\\2{\rm{x}} = 11\\x = \frac{{11}}{2}\end{array}\)

Như vậy, bạn Vuông giải đúng, bạn Tròn giải sai

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(\begin{array}{l}a)\frac{{4{\rm{x}} - 6}}{{5{{\rm{x}}^2} - x}}.\frac{{25{{\rm{x}}^2} - 10{\rm{x}} + 1}}{{27 + 8{{\rm{x}}^3}}}\\ = \frac{{ - 2\left( {3 - 2{\rm{x}}} \right)}}{{x\left( {5{\rm{x}} - 1} \right)}}.\frac{{{{\left( {5{\rm{x}} - 1} \right)}^2}}}{{\left( {3 - 2{\rm{x}}} \right)\left( {9 + 6{\rm{x}} + 4{{\rm{x}}^2}} \right)}}\\ = \frac{{ - 2\left( {5{\rm{x}} - 1} \right)}}{{x\left( {9 + 6{\rm{x}} + 4{{\rm{x}}^2}} \right)}}\\b)\frac{{2{\rm{x}} + 10}}{{{{\left( {x - 3} \right)}^2}}}:\frac{{{{\left( {x + 5} \right)}^3}}}{{{x^2} - 9}}\\ = \frac{{2{\rm{x}} + 10}}{{{{\left( {x - 3} \right)}^2}}}.\frac{{{x^2} - 9}}{{{{\left( {x + 5} \right)}^2}}}\\ = \frac{{2\left( {x + 5} \right)\left( {x - 3} \right)\left( {x + 3} \right)}}{{{{\left( {x - 3} \right)}^2}{{\left( {x + 5} \right)}^3}}}\\ = \frac{{2\left( {x + 3} \right)}}{{\left( {x - 3} \right){{\left( {x + 5} \right)}^2}}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Ta có: \(\overrightarrow {{u_1}}  = \left( {1; - 2} \right) \Rightarrow \overrightarrow {{n_1}}  = \left( {2;1} \right)\) và \(\overrightarrow {{u_2}}  = \left( {1;3} \right) \Rightarrow \overrightarrow {{n_2}}  = \left( {3; - 1} \right)\).

Ta có \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {2.3 + 1.( - 1)} \right|}}{{\sqrt {{2^2} + {1^2}} .\sqrt {{3^2} + {{( - 1)}^2}} }} = \frac{{\sqrt 2 }}{2} \\ \Rightarrow \left( {{\Delta _1},{\Delta _2}} \right) = {45^o}\)

18 tháng 5 2021

1.      \(2x^2-3x-5=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2,5\\x=-1\end{cases}}\)

Vậy tập ngiệm của phương trình là \(S=\left\{2,5;-1\right\}\)

18 tháng 5 2021

2x2-3x-5=0

2x2+2x-5x-5=0

2x(x+1)+5(x+1)=0

(x+1)(2x+5)=0

TH1 x+1=0 <=>x=-1

TH2 2x+5=0<=>2x=-5<=>x=-5/2

2. ta có:

2(x-2y)-(2x+y)=-1.2-8

2x-4y-2x-y=-2-8

-5y=-10

y=2

thay vào 

x-2y=-1 ( với y=2)

<=> x-2.2=-1

x-4=-1

x=3