1.a)x\(\in Z;\) Chứng minh n\(_{^3}\)=11n chia hết cho 6 ; b) n \(\in\) N để n\(^2\)-1 nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\cap B=\left\{{}\begin{matrix}x>m\\x\le\dfrac{2m-1}{3}\end{matrix}\right.\left(1\right)\)
\(TH1:m< \dfrac{2m-1}{3}\)
\(\Leftrightarrow m-\dfrac{2m-1}{3}< 0\)
\(\Leftrightarrow\dfrac{m-1}{3}< 0\)
\(\Leftrightarrow m< 1\)
\(\left(1\right)\Leftrightarrow A\cap B=\left\{x\in Z|m< x\le\dfrac{2m-1}{3}\right\}\)
\(TH2:m>\dfrac{2m-1}{3}\)
\(\Leftrightarrow m-\dfrac{2m-1}{3}>0\)
\(\Leftrightarrow\dfrac{m-1}{3}>0\)
\(\Leftrightarrow m>1\)
\(\left(1\right)\Leftrightarrow A\cap B=\varnothing\)
Lời giải:
$E=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}$
$A=\left\{1; -4\right\}$
$B=\left\{-1; 2\right\}$
Do đó:
$A\cup B = \left\{-4; -1; 1;2\right\}$
$C_E(A\cup B)=\left\{-5;-3;-2; 0;3;4;5\right\}$
$A\cap B = \varnothing$
$C_E(A\cap B)=E$
a) ta có: \(A=\frac{2x}{x-2}=\frac{2x-4+4}{x-2}=\frac{2.\left(x-2\right)+4}{x-2}=\frac{2.\left(x-2\right)}{x-2}+\frac{4}{x-2}=2+\frac{4}{x-2}\)
Để \(A\inℤ\)
\(\Rightarrow\frac{4}{x-2}\inℤ\)
\(\Rightarrow4⋮x-2\Rightarrow x-2\inƯ_{\left(4\right)}=\left(4;-4;2;-2;1;-1\right)\)
nếu x -2 = 4 => x = 6 (TM)
x- 2= - 4 => x= - 2 (TM)
x- 2= 2 => x = 4 (TM)
x- 2 = -2 => x = 0 (TM)
x - 2 = 1 => x = 3 (TM)
x - 2 = -1 => x= 1 (TM)
KL: \(x\in\left(6;-2;4;0;3;1\right)\)
c) ta có: \(C=\frac{x^2+2}{x+1}=\frac{\left(x+1\right).\left(x-1\right)+3}{x+1}=\frac{\left(x+1\right).\left(x-1\right)}{x+1}+\frac{3}{x+1}\)\(=x-1+\frac{3}{x+1}\)
Để \(C\inℤ\)
\(\Rightarrow\frac{3}{x+1}\inℤ\)
\(\Rightarrow3⋮x+1\Rightarrow x+1\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu x + 1 = 3 => x = 2 (TM)
x + 1 = - 3 => x = -4 (TM)
x + 1 = 1 => x = 0
x + 1 = -1 => x = -2 (TM)
KL: \(x\in\left(2;-4;0;-2\right)\)
p/s
b.
\(\frac{7}{x-1}\in Z\)
\(\Rightarrow7⋮x-1\)
\(\Rightarrow x-1\inƯ\left(7\right)\)
\(\Rightarrow x-1\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow x\in\left\{-6;0;2;8\right\}\)
c.
\(\frac{x+2}{x-1}\in Z\)
\(\Rightarrow x+2⋮x-1\)
\(\Rightarrow x-1+3⋮x-1\)
\(\Rightarrow3⋮x-1\)
\(\Rightarrow x-1\inƯ\left(3\right)\)
\(\Rightarrow x-1\in\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-2;0;2;4\right\}\)
\(a,\frac{x+3}{5}\in\Leftrightarrow x+3\in B5\Leftrightarrow x\in B5-3\)
\(b,\frac{7}{x-1}\in Z\Leftrightarrow x-1\inƯ7\Leftrightarrow x-1\in\left\{\pm1;\pm7\right\}\Leftrightarrow x\in\left\{-6;0;2;8\right\}\)
\(c,\frac{x+2}{x-1}\in Z\Leftrightarrow\frac{x-1+3}{x-1}\in Z\Leftrightarrow1+\frac{3}{x-1}\in Z\Leftrightarrow\frac{3}{x-1}\in Z\)
\(\Leftrightarrow x-1\inƯ3\Leftrightarrow x-1\in\left\{\pm1;\pm3\right\}\Leftrightarrow x\in\left\{-2;0;2;4\right\}\)
a: A={0;1;2;3}
b: B={-16;-13;-10;-7;-4;-1;2;5;8}
c: C={-9;-8;-7;...;7;8;9}
d: \(D=\varnothing\)
Ta có : \(A=\dfrac{x^2+2x+1-4x-4+4}{x+1}\)
\(=\dfrac{\left(x+1\right)^2-4\left(x+1\right)+4}{x+1}=x+1-4+\dfrac{4}{x+1}\)
- Để A là số nguyên
\(\Leftrightarrow x+1\inƯ_{\left(4\right)}\) ( Do x là số nguyên )
\(\Leftrightarrow x+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow x\in\left\{0;-2;1;-3;3;-5\right\}\)
Vậy ....