Cho \(f\left(x\right)=ax+b\) ; \(g\left(x\right)=2x^2+x+7\)
Tìm a , b biết \(f\left(1\right)=g\left(1\right)\)và \(f\left(2\right)=g\left(-2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(f\left(1\right)=g\left(2\right)\)
hay \(2.1^2+a.1+4=2^2-5.2-b\)
\(2+a+4\) \(=4-10-b\)
\(6+a\) \(=-6-b\)
\(a+b\) \(=-6-6\)
\(a+b\) \(=-12\) \(\left(1\right)\)
Lại có \(f\left(-1\right)=g\left(5\right)\)
hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\)
\(2-a+4\) \(=25-25-b\)
\(6-a\) \(=-b\)
\(-a+b\) \(=-6\)
\(b-a\) \(=-6\)
\(b\) \(=-b+a\) \(\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:
\(a+\left(-6+a\right)=-12\)
\(a-6+a\) \(=-12\)
\(a+a\) \(=-12+6\)
\(2a\) \(=-6\)
\(a\) \(=-6:2\)
\(a\) \(=-3\)
Mà \(a=-3\)
⇒ \(b=-6+\left(-3\right)=-9\)
Vậy \(a=3\) và \(b=-9\)
Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "
Lời giải:Đặt $A=f(1)=a+b+c; B=f(-1)=a-b+c; C=f(0)=c$
Theo đề bài: $|A|, |B|, |C|\leq 1$
\(|a|+|b|+|c|=|\frac{A+B}{2}-C|+|\frac{A-B}{2}|+|C|\)
\(\leq |\frac{A+B}{2}|+|-C|+|\frac{A-B}{2}|+|C|=|\frac{A}{2}|+|\frac{B}{2}|+|C|+|\frac{A}{2}|+|\frac{-B}{2}|+|C|\)
\(=|A|+|B|+2|C|\leq 1+1+2=4\) (đpcm)
Mình có nghĩ ra cách này mọi người xem giúp mình với
f(x) = \(ax^2+bx+c\)
Ta có f(0) = 2 => c = 2
Ta đặt Q(x) = \(ax^2+bx+c-2020\)
và G(x) = \(ax^2+bx+c+2021\)
f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư
\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)
Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0
hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)
G(x) chia cho x + 1 số dư
\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)
Mà G(x) chia hết cho x + 1 nên \(R_2\)=0
hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)
Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)
\(f\left(1\right)=3\Rightarrow a+b=3;f'\left(x\right)=a\Rightarrow f'\left(1\right)=a=\dfrac{1}{\sqrt{3}}\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{\sqrt{3}}\\a+b=3\end{matrix}\right.\Rightarrow...\)
f(0) = a . 0 + b = b
f(f(0)) = f(b) = a . b + b = ab + b
f(f(f(0))) = f(ab + b) = a . (ab + b) + b = a2b + ab + b
f(1) = a . 1 + b = a + b
f(f(1)) = f(a + b) = a . (a + b) + b = a2 + ab + b
f(f(f(1))) = f(a2 + ab + b) = a . (a2 + ab + b) + b = a3 + a2b + ab + b
a3 + a2b + ab + b = 29
a2b + ab + b = 2
=> (a3 + a2b + ab + b) - (a2b + ab + b) = 29 - 2
a3+ a2b + ab + b - a2b - ab - b = 27
a3 = 33
a = 3
* Xét \(f\left(a\right)=x^2+a^2+b=0\)(điều 1)
\(f\left(b\right)=x^2+ab+b=0\)(điều 2)
- Lấy (điều 1) - (điều 2), ta có:
a3 - ab = 0
=> a(a - b) = 0
=> \(\orbr{\begin{cases}a=0\\a-b=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)
Vậy a = b = 0
- Do f(a) = f(b) = 0 nên a,b là nghiệm của f(x)
* Xét f(a) = a2 + a2 + b = 2a2 + b = 0 (điều 1)
f(b) = b2 + ab + b = 0 (điều 2)
=> 2a2 + b = b2 + ab + b
=> 2a2 = b2 + ab
=> 2a2 = b.(b + a)
\(\Rightarrow\orbr{\begin{cases}2a^2=0\\b\left(b+a\right)=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)
Vậy a = b = 0
\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)
\(\Rightarrow a-b+c=-3\)
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)
\(\Rightarrow3a+3b=0\Rightarrow a=-b\)
\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)
\(\Rightarrow A=0\)
Ta có: \(f\left(1\right)=g\left(1\right)\Rightarrow a.1+b=2.1^2+1+7\Rightarrow a+b=10\) (1)
\(f\left(2\right)=g\left(-2\right)\Rightarrow a.2+b=2.\left(-2\right)^2+\left(-2\right)+7\Rightarrow2a+b=13\) (2)
Từ (1) và (2) \(\Rightarrow2a+b-a-b=13-10\Rightarrow a=3\Rightarrow3+b=10\Rightarrow b=7\)
Vậy a=3; b=7