Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(f\left(1\right)=g\left(2\right)\)
hay \(2.1^2+a.1+4=2^2-5.2-b\)
\(2+a+4\) \(=4-10-b\)
\(6+a\) \(=-6-b\)
\(a+b\) \(=-6-6\)
\(a+b\) \(=-12\) \(\left(1\right)\)
Lại có \(f\left(-1\right)=g\left(5\right)\)
hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\)
\(2-a+4\) \(=25-25-b\)
\(6-a\) \(=-b\)
\(-a+b\) \(=-6\)
\(b-a\) \(=-6\)
\(b\) \(=-b+a\) \(\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:
\(a+\left(-6+a\right)=-12\)
\(a-6+a\) \(=-12\)
\(a+a\) \(=-12+6\)
\(2a\) \(=-6\)
\(a\) \(=-6:2\)
\(a\) \(=-3\)
Mà \(a=-3\)
⇒ \(b=-6+\left(-3\right)=-9\)
Vậy \(a=3\) và \(b=-9\)
Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "
Thay F(1) với x =1 vào thôi
G(2) cũng vậy thay x=2 vào rồi cho 2 cái bằng nhau là tìm ra a
Ta có \(f\left(1\right)=g\left(2\right)\)
=> \(2+a+4=4-20-b\)
=> \(\left(2+a+4\right)-\left(4-20-b\right)=0\)
=> \(2+a+4-4+20+b=0\)
=> \(22+a+b=0\)
=> \(a+b=-22\)(1)
và \(f\left(-1\right)=g\left(5\right)\)
=> \(2-a+4=25-25-b\)
=> \(2-a+4=-b\)
=> \(2+4=a-b\)
=> \(a-b=6\)
=> \(a=6+b\)(2)
Thế (2) vào (1), ta có: \(6+b+b=-22\)
=> \(2b=-28\)
=> \(b=-14\)
và \(a=6+b=6-14=-8\)
Lời giải:
\(\left\{\begin{matrix}
f(1)=g(2)\\
f(-1)=g(5)\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
2.1^2+a.1+4=2^2-5.2-b\\
2(-1)^2-a+4=5^2-5.5-b\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=-12\\ a-b=6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-3\\ b=-9\end{matrix}\right.\)
Vậy...........
ta có: F(1) = G(2)
\(\Rightarrow2.1^2+a.1+4=2^2-5.2-b\)
\(2+a+4=4-10-b\)
\(6+a=-6-b\)
\(\Rightarrow a+b=-6-6\)
\(a+b=-12\Rightarrow a=-12-b\)
ta có: F(-1) = G(5)
\(\Rightarrow2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\)
\(2-a+4=25-25-b\)
\(6-a=-b\)
\(\Rightarrow6-\left(-12-b\right)=-b\)
\(6+12+b=-b\)
\(b+b=-6-12\)
\(2b=-18\)
\(b=\left(-18\right):2\)
\(b=-9\)
\(\Rightarrow a+\left(-9\right)=-12\)
\(a=\left(-12\right)-\left(-9\right)\)
\(a=-3\)
KL: a= -3 ; b= -9
Chúc bn học tốt !!!!!
Có lẽ bạn nên sửa đề thành \(f\left(x\right)=...x^2+1...\)hoặc là \(g\left(x\right)=...\left(bx-1\right)...\)
Ta có:
\(f\left(x\right)=ax^3+4x^3-4x+8=\left(a+4\right)x^3-4x+8\)
\(g\left(x\right)=x^3+4x\left(bx-1\right)+c-3=x^3+4bx^2-4x+c-3\)
Để \(f\left(x\right)=g\left(x\right)\Leftrightarrow\hept{\begin{cases}a+4=1\\4b=0\\c-3=8\end{cases}\Leftrightarrow\hept{\begin{cases}a=-3\\b=0\\c=11\end{cases}}}\)
Kết luận
a) \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)
\(=x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
\(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
\(=2x+1\)
b) \(f\left(x\right)-g\left(x\right)+h\left(x\right)=0\)
\(\Leftrightarrow\)\(2x+1=0\)
\(\Leftrightarrow\)\(x=-\frac{1}{2}\)
Ta có: \(f\left(1\right)=g\left(1\right)\Rightarrow a.1+b=2.1^2+1+7\Rightarrow a+b=10\) (1)
\(f\left(2\right)=g\left(-2\right)\Rightarrow a.2+b=2.\left(-2\right)^2+\left(-2\right)+7\Rightarrow2a+b=13\) (2)
Từ (1) và (2) \(\Rightarrow2a+b-a-b=13-10\Rightarrow a=3\Rightarrow3+b=10\Rightarrow b=7\)
Vậy a=3; b=7