K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2019

\(A=\frac{2}{5}.a^2.10.a.b\)

\(A=\frac{2}{5}.\left(\frac{4}{5}\right)^2.10.\frac{4}{5}.-4\)

\(A=\frac{2}{5}.\frac{16}{25}.10.\frac{4}{5}.-4\)

\(A=-\frac{1024}{125}\)

22 tháng 11 2017

giup minh voi cac ban

a: \(A=\dfrac{19}{5}xy^2\cdot x^3y=\dfrac{19}{5}x^4y^3\)

b: Hệ số là 19/5 và bậc là 7

c: Khi x=1 và y=2 thì \(A=\dfrac{19}{5}\cdot1^4\cdot2^3=\dfrac{19}{5}\cdot8=\dfrac{152}{5}\)

14 tháng 8 2016

Ta có  : \(x=\sqrt{\frac{5}{2}}+\sqrt{\frac{2}{5}}=\frac{5+2}{\sqrt{10}}=\frac{7}{\sqrt{10}}>0\)

Do đó : \(A=\sqrt{10x^2}-12x\sqrt{10}+36=x\sqrt{10}-12x\sqrt{10}+36=36-11x\sqrt{10}\)

\(=36-11.\sqrt{10}.\frac{7}{\sqrt{10}}=36-77=-41\)

14 tháng 8 2016

Đề có sai ko bn , phải là 10x^2 ms khai triển hđt đc chứ

29 tháng 7 2019

B = \(\frac{-2}{3}+\frac{3}{4}-\frac{-1}{6}+\frac{-2}{5}=\frac{-240+270+60-144}{360}=\frac{-54}{360}=-0,15\)

18 tháng 9 2019

Thêm đk \(a,b,c\ne0\)

Ta có: \(\frac{ab}{a+b}=\frac{1}{3}\Rightarrow\frac{a+b}{ab}=3\)

\(\frac{bc}{b+c}=\frac{1}{4}\Rightarrow\frac{bc}{b+c}=4\)

\(\frac{ca}{c+a}=\frac{1}{5}\Rightarrow\frac{c+a}{ca}=5\)

\(\Rightarrow\frac{a+b}{ab}+\frac{b+c}{bc}+\frac{c+a}{ca}=12\)

\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}=12\)

\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=12\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

a. Tại x=\(\frac{-1}{2}\), ta có:

 \(\left(\frac{-1}{2}\right)^2+4.\left(\frac{-1}{2}\right)+3=\frac{1}{4}+\left(-2\right)+3=\frac{5}{4}\)

b. Ta có:

 \(x^2+4x+3=0\)

\(\Rightarrow x^2+x+3x+3=0\)

\(\Rightarrow\left(x^2+x\right)+\left(3x+3\right)=0\)

\(\Rightarrow x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x+1=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-3\end{cases}}}\)

Vậy \(x=-1;x=-3\)

25 tháng 3 2018

\(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}^2-...-\frac{1}{5}\right)\left(2,4.42-21.4,8\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)

=> \(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-...-\frac{1}{5}\right).0}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)=     0

2 tháng 4 2017

\(A=3+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{4}{3}}}}=3+\frac{1}{1+\frac{1}{1+\frac{3}{4}}}\)

\(=3+\frac{1}{1+\frac{1}{\frac{7}{4}}}=3+\frac{1}{1+\frac{4}{7}}=3+\frac{1}{\frac{11}{4}}=3+\frac{4}{11}=\frac{37}{11}\)

\(B=-5+\frac{1}{1-\frac{1}{2+\frac{1}{\frac{3}{4}}}}=-5+\frac{1}{1-\frac{1}{2+\frac{4}{3}}}\)

\(=-5+\frac{1}{1-\frac{1}{\frac{10}{3}}}=-5+\frac{1}{1-\frac{3}{10}}=-5+\frac{1}{\frac{7}{10}}=-5+\frac{10}{7}=\frac{-25}{7}\)