So sánh S và B, biết:
\(S=\frac{9}{10!}+\frac{9}{11!}+...+\frac{9}{1000!}\); \(B=\frac{9!}{1000}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)
\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)
\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\)
\(\Rightarrow\)\(S>10\)
Vậy \(S>10\)
Chúc bạn học tốt ~
Ta có : \(A=\frac{10^{2016}-1}{10^{2017}-11}\)
\(\Leftrightarrow10.A=\frac{10.\left(10^{2016}-1\right)}{10^{2017}-11}=\frac{10^{2017}-10}{10^{2017}-11}\)
\(=\frac{10^{2017}-11+1}{10^{2017}-11}=1+\frac{1}{10^{2017}-11}\)
Lại có : \(B=\frac{10^{2016}+1}{10^{2017}+9}\)
\(\Leftrightarrow10.B=\frac{10\left(10^{2016}+1\right)}{10^{2017}+9}=\frac{10^{2017}+10}{10^{2017}+9}\)
\(=\frac{10^{2017}+9+1}{10^{2017}+9}=1+\frac{1}{10^{2017}+9}\)
Do : \(10^{2017}-11< 10^{2017}+9\) \(\Rightarrow\frac{1}{10^{2017}-11}>\frac{1}{10^{2017}+9}\)
\(\Rightarrow1+\frac{1}{10^{2017}-11}>1+\frac{1}{10^{2017}+9}\)
hay \(A>B\)
Vậy : \(A>B\)
Có: \(\frac{9}{10!}=\frac{9}{10!}\)
\(\frac{9}{11!}< \frac{10}{11!}=\frac{11-1}{11!}=\frac{11}{11!}-\frac{1}{11!}=\frac{1}{10!}-\frac{1}{11!}\)
\(\frac{9}{12!}< \frac{11}{12!}=\frac{12-1}{12!}=\frac{12}{12!}-\frac{1}{12!}=\frac{1}{11!}-\frac{1}{12!}\)
............
\(\frac{9}{1000!}< \frac{999}{1000!}=\frac{1000-1}{1000!}=\frac{1000}{1000!}-\frac{1}{1000!}=\frac{1}{999!}-\frac{1}{1000!}\)
\(\Rightarrow\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{1}{1000!}< \frac{9}{10!}+\frac{1}{10!}-\frac{1}{11!}+\frac{1}{11!}-\frac{1}{12!}+...+\frac{1}{999!}-\frac{1}{1000!}\)
\(\Rightarrow\frac{9}{10!}+\frac{9}{11!}+...+\frac{1}{1000!}< \frac{10}{10!}-\frac{1}{1000!}=\frac{1}{9!}-\frac{1}{1000!}< \frac{1}{9!}\)
\(\Rightarrow\frac{9}{10!}+\frac{9}{11!}+...+\frac{9}{1000!}< \frac{1}{9!}\)
\(\Rightarrowđpcm\)
đặt tên là B
B=910!+911!+912!+.............+91000!
Ta thấy :
910!=10−110!=19!−110!
911!<11−111!=110!−111!
91000!<1000−11000!=1999!−11000!
⇒B<19!−110!+110!−111!+............+1999!−11000!
B<19!−11000!
\(\frac{9}{10!}+\frac{9}{11!}+...+\frac{9}{1000!}\)
\(=\frac{10-1}{10!}+\frac{11-2}{11!}+...+\frac{1000-991}{1000!}\)
\(=\frac{10}{10!}-\frac{1}{10!}+\frac{11}{11!}-\frac{1}{11!}+...+\frac{1000}{1000!}-\frac{1}{1000!}\)
\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+...+\frac{1}{999!}-\frac{1}{1000!}\)
\(=\frac{1}{9!}-\frac{1}{1000!}< \frac{1}{9!}\left(đpcm\right)\)
s<b nha bạn tk cho mình đi
tic cho mình hết âm nhé