K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

Bài 1:

Giải:

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4\)

+) \(\frac{x^2}{4}=4\Rightarrow x=\pm4\)

+) \(\frac{y^2}{9}=4\Rightarrow y=\pm6\)

+) \(\frac{z^2}{16}=4\Rightarrow z=\pm8\)

Vậy bộ số \(\left(x,y,z\right)\) là \(\left(4,6,8\right);\left(-4,-6,-8\right)\)

8 tháng 10 2017

ai trả lời giúp mk nha

28 tháng 11 2021

Theo mình là:

a/ Theo đề ta có:

x/3=y/4 và x+y=14

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

x/3=y/4=x+y=3+4=14/7=2

Từ x/3=2=>x=2.3=6

Từ y/4=2>y=2.4=8

Vậy x=6 và y=8.

b/

Theo đề ta có:

a/7=b/9 và 3a-2b=30

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

a/7=b/9=3a/21=2b/18=3a-2b/21=18=30/3=10

Từ a/7=10=>a=10.7=70

Từ b/9=10=>b/10.9=90

Vậy a=70 và b=90.

c/

Theo đề ta có:

x/3=y/4=z/5 và x-y+z=20

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

x/3=y/4=z/5=x-y+z/3-4=5=20/4=5

Từ x/3=5=>x=5.3=15

Từ y/4=5=>y=5.4=20

Từ z/5=5=>z=5.5=25

Vậy x=15,y=20 và z=25

d/

Theo đề ta có:

a/4=b/7=c/10 và 2a+3b+4c=69

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

a/4=b/7=c/10=2a/8=3b/21=4c/40=2a+3b+4c/8+21+40=69/69=1

Từ a/4=1=>a=1.4=4

Từ b/7=1=>b=1.7=7

Từ c/10=1=>c=1.10=10

Vậy a=4,b=7 và c=10

28 tháng 11 2021

a) x=6    y=8
b) a=70   b=90
c) x=15   y=20   z=25

d) a=4  b=7  c=10 

bạn kiểm tra lại giúp mk xem câu nào sai chứ mk ko chắc đúng 100% đâu. (hơi mất tự tin sau khi nhìn điểm số ý mà)

_HT_

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

Vì ba số x,y,z biết x,y,z tỉ lệ với ba số 2,3,4 nên \(\frac{x}{2} = \frac{y}{3} = \frac{z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2} = \frac{y}{3} = \frac{z}{4} = \frac{{x - y - z}}{{2 - 3 - 4}} = \frac{2}{{ - 5}} = \frac{{ - 2}}{5}\)

Vậy \(x = 2.\frac{{ - 2}}{5} = \frac{{ - 4}}{5};y = 3.\frac{{ - 2}}{5} = \frac{{ - 6}}{5};z = 4.\frac{{ - 2}}{5} = \frac{{ - 8}}{5}\)

Ta có: \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\)

\(\left(y+\dfrac{2}{5}\right)^{100}\ge0\forall y\)

\(\left(z-3\right)^{678}\ge0\forall z\)

Do đó: \(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+\dfrac{2}{5}\right)^{100}+\left(z-3\right)^{678}\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(\left(x,y,z\right)=\left(\dfrac{1}{5};\dfrac{-2}{5};3\right)\)

17 tháng 1 2022

Vì \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0,\left(y+0,4\right)^{100}\ge0,\left(z-3\right)^{678}\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0,4=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-0,4\\z=3\end{matrix}\right.\)

Vậy \(\left(x,y,z\right)=\left(\dfrac{1}{5};-0,4;3\right)\)

17 tháng 1 2022

Vì \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\)

\(\left(y+0,4\right)^{100}\ge\forall y\)

\(\left(z-3\right)^{678}\ge0\forall z\)

\(\Rightarrow\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}\ge0\)

mà \(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)

Dấu ''='' xảy ra khi \(x=\dfrac{1}{5};y=-0,4;z=3\)