Cho \(0< \alpha\); \(\beta< \frac{\pi}{2}\); \(\alpha+\beta=\frac{\pi}{4}\) và \(tan\alpha.tan\beta=3-2\sqrt{2}\)
a) Tính gtri của \(A=tan\left(\alpha+\beta\right)\)
b) Tính gtri của \(B=tan\alpha+tan\beta\)
c) TÍnh \(tan\alpha\) và \(tan\beta\). Suy ra \(\alpha\) và \(\beta\)
\(A=tan\left(a+b\right)=tan\frac{\pi}{4}=1\)
Ta có: \(tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}\)
\(\Rightarrow B=tana+tanb=tan\left(a+b\right)\left(1-tana.tanb\right)=1.\left(1-3+2\sqrt{2}\right)=2\sqrt{2}-2\)
\(\left\{{}\begin{matrix}tana+tanb=2\sqrt{2}-2\\tana.tanb=3-2\sqrt{2}\end{matrix}\right.\)
Theo Viet đảo, \(tana;tanb\) là nghiệm của:
\(x^2-\left(2\sqrt{2}-2\right)x+3-2\sqrt{2}=0\)
\(\Leftrightarrow\left(x-\sqrt{2}+1\right)^2=0\Rightarrow x=\sqrt{2}-1\)
\(\Rightarrow tana=tanb=\sqrt{2}-1\Rightarrow a=b=\frac{\pi}{8}\)