Xác định đa thức f(x) bậc 3 sao cho khi chia đa thức ấy lần lượt cho các nhị thức (x-1);(x-2);(x-3) đều được dư là 6 và tại x=-1 thì đa thức nhận giá tri bằng -18
Giải giúp mình với.Cảm on nhiều.!!!!!!!!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức 3 có dạng : \(f\left(x\right)=ax^3+bx^2+cx+d\)
Theo bài ra ta có hệ phương trình :
\(\hept{\begin{cases}f\left(1\right)=a+b+c+d=6\\f\left(2\right)=8a+4b+2c+d=6\\f\left(3\right)=27a+9b+3a+d=6;f\left(-1\right)=-a+-c+d=-18\end{cases}}\) ( Vì cái này phải chia ra làm 4 nhưng không có nên mình phải viết lên trên dòng 3 cái f(-1) bạn phải cho xuống dòng 4 nha )
giải hệ pt ta đc :
\(\hept{\begin{cases}a=1\\b=-6\\c=11;d=0\end{cases}}\)
Vậy đa thức bậc 3 là : \(f\left(x\right)=x^3-6x^2+11x\)
Đa thực bậc 3 có dạng : \(f\left(x\right)=ax^3+bx^2+cx+d\)
Theo bài ra ta có hệ phương trình :
\(\left\{{}\begin{matrix}f\left(1\right)=a+b+c+d=6\\f\left(2\right)=8a+4b+2c+d=6\\f\left(3\right)=27a+9b+3c+d=6\\f\left(-1\right)=-a+b-c+d=-18\end{matrix}\right.\)
Giải hệ phương trình ta được :
\(\left\{{}\begin{matrix}a=1\\b=-6\\c=11\\d=0\end{matrix}\right.\)
Vậy đa thức bậc 3 là \(f\left(x\right)=x^3-6x^2+11x\)
Gọi đa thức cần tìm là f(x)
Do f(x) chia cho (x-1), (x-2), (x-3) đều có dư là 6
nên f(x) = a(x - 1)(x - 2)(x - 3) + 6
Mà f(-1) = -18
nên a(-1 - 1)(-1 - 2)(-1 - 3) + 6 = -18
<=> -24a = -24 <=> a = 1
Vậy đa thức cần tìm là
f(x) = (x - 1)(x - 2)(x - 3) + 6
\(f\left(x\right)\) chia \(x+1\) dư -15 \(\Rightarrow f\left(-1\right)=-15\Rightarrow-a+b=-16\)
\(f\left(x\right)\) chia \(x-3\) dư 45 \(\Rightarrow f\left(3\right)=45\Rightarrow3a+b=0\)
\(\Rightarrow\left\{{}\begin{matrix}-a+b=-16\\3a+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-12\end{matrix}\right.\)
\(f\left(x\right)=x^4-x^3-x^2+4x-12=\left(x^2-4\right)\left(x^2-x+3\right)\)
\(f\left(x\right)=0\Leftrightarrow x^2-4=0\Rightarrow x=\pm2\)
Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\Rightarrow2b=2\Rightarrow b=1\)
Thay b=1 vào lần lượt (1) ,(2),(3) ta được:
\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ từng vế của (4) cho (5) ta được:
\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...