K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2022

mik cần gấp nha cứu mik

còn bạn nào hcoj giỏi thức ko huhu :((

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABH=ΔACK

b: Xét ΔAHK có AH=AK(ΔABH=ΔACK)

nên ΔAHK cân tại A

c: Xét ΔABC có

AK/AB=AH/AC

Do đó: KH//BC

18 tháng 12 2023

a:ΔABH vuông tại H nên \(\widehat{BAH}+\widehat{ABH}=90^0\)(1)

Ta có: \(\widehat{BAH}+\widehat{KAC}+\widehat{BAC}=180^0\)

=>\(\widehat{BAH}+\widehat{KAC}+90^0=180^0\)

=>\(\widehat{BAH}+\widehat{KAC}=90^0\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{ABH}=\widehat{KAC}\)

Xét ΔHAB vuông tại H và ΔKCA vuông tại K có

AB=CA

\(\widehat{ABH}=\widehat{KAC}\)

Do đó: ΔHAB=ΔKCA

=>AH=CK

b: Ta có: ΔHAB=ΔKCA

=>HB=KA

HK=HA+AK

mà AK=HB và HA=CK

nên HK=HB+CK

a) Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC(cạnh huyền-góc nhọn)

Suy ra: AH=AK(hai cạnh tương ứng)

a) Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC(cạnh huyền-góc nhọn)

Suy ra: AH=AK(hai cạnh tương ứng)

 

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc HAB chung

=>ΔAHB=ΔAKC

=>AH=AK

b:

Xét ΔABC có

BH,CK là đường cao

BH cắt CK tại I

=>I là trực tâm

=>AI vuông góc BC tại M

Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có

BC chung

KC=HB

=>ΔKBC=ΔHCB

=>góc IBC=góc ICB

=>ΔIBC cân tại I

mà IM là đường cao

nên IM là phân giác

c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC

11 tháng 5 2023

Bạn ơi cho hỏi là Ak/Ab = AH/Ac là sao ạ

15 tháng 2 2016

moi hok lop 6

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH chung

Do đó: ΔAHB=ΔAKC

b: ΔAHB=ΔAKC

=>AH=AK

c: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co

AI chung

AH=AK

Do đó: ΔAKI=ΔAHI

=>góc KAI=góc HAI

=>AI là phân giác của góc BAC

28 tháng 2 2023

`a)`

Có `Delta ABC` cân tại `A=>AB=AC`

Xét `Delta ABH` và `Delta ACK` có :

`hat(AHB)=hat(AKC)(=90^0)`

`hat(A)-chung`

`AB=AC(cmt)`

`=>Delta ABH=Delota ACK(c.h-g.n)`

`b)` 

Xét `Delta BHC` và `Delta CKB` có :

`hat(BHC)=hat(CKB)(=90^0)`

`hat(KBC)=hat(HCB)(hat(ABC)=hat(ACB))`

`BC-chung`

`=>Delta BHC=Delta CKB(c.h-g.n)`

`c)`

Có `Delta ABH= Delta ACK(cmt)=>AH=AK` ( 2 cạnh t/ứng )

`=>Delta AHK` cân tại `A=>hat(AHK)=(180^0-hat(A))/2`

`Delta ABC ` cân tại `A=>hat(ACB)=(180^0-hat(A))/2`

mà `2` góc này ở vị trí đ/vị 

nên `KH//BC`

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K co

AB=AC
góc A chung

=>ΔAHB=ΔAKC

b: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

KC=HB

=>ΔKCB=ΔHBC

c: Xét ΔABC có AK/AB=AH/AC

nên KH//CB