Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=-x^2+4x-\frac{1}{2}\)
\(\Leftrightarrow B=-\left(x^2-4x+\frac{1}{2}\right)\)
\(\Leftrightarrow B=-\left(x^2-4x+4-4+\frac{1}{2}\right)\)
\(\Leftrightarrow B=-\left(x-2\right)^2+\frac{7}{2}\)
Vì \(\left(x-2\right)^2\ge0\forall x\)
\(\Leftrightarrow-\left(x-2\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x-2\right)^2+\frac{7}{2}\le\frac{7}{2}\forall x\)
\(\Rightarrow Max_B=\frac{7}{2}\) khi x=2
\(B=-x^2+4x-\frac{1}{2}=-\left(x^2-4x+4\right)+\frac{7}{2}\)\(=-\left(x-2\right)^2+\frac{7}{2}\)
Vì \(-\left(x-2\right)^2\le0\Rightarrow B\le\frac{7}{2}\)
Dấu ''='' xảy ra \(\Leftrightarrow x=2\)
Vậy \(Max_B=\frac{7}{2}\Leftrightarrow x=2\)
\(A=\left(x+3\right)\left(x-4\right)+7=x^2-x-5=\left(x^2-x+\frac{1}{4}\right)-\frac{1}{4}-5\)
\(=\left(x-\frac{1}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
"=" <=> x = 1/2
\(B=3-\left(x-1\right)\left(x-2\right)=3-\left(x^2-3x+2\right)\)
\(=3-\left(x-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+2\right)\)
\(=3+\frac{1}{4}-\left(x-\frac{3}{2}\right)^2\le\frac{13}{4}\)
Xảy ra khi x = 3/2
9x2+6x+25= (3x)2+2.3x.1+1-1+25
= (3x+1)2+24
Vì (3x+1)2 luôn > hoặc = 0
Nên (3x+1)2+24 luôn > hoặc =24
Vậy GTNN của 9x2+6x+25 bằng 24 khi (3x+1)2=0
<=> x= \(\frac{-1}{3}\)
Câu GTLN bạn làm tương tự câu tìm giá trị nhỏ nhất khác nhau một chút là tìm GTLN thì đặt dấu - ra ngoài
Cái này dễ :v, Mincopski thẳng cánh :v
\(A=\sqrt{8x^2+1}+\sqrt{8y^2+1}+\sqrt{8z^2+1}\)
\(=\sqrt{\left(\sqrt{8}x\right)^2+1}+\sqrt{\left(\sqrt{8}y\right)^2+1}+\sqrt{\left(\sqrt{8}z\right)^2+1}\)
\(\ge\sqrt{\left(\sqrt{8}x+\sqrt{8}y+\sqrt{8}z\right)^2+\left(1+1+1\right)^2}\)
\(\ge\sqrt{\left(\sqrt{8}\left(x+y+z\right)\right)^2+9}\)
\(\ge\sqrt{\sqrt{8}^2+9}=\sqrt{8+9}=17\)
Xảy ra khi \(x=y=z=\frac{1}{3}\)
Done !! :3
xem lai đi bạn ơi đây là timg GTLN chứ không phải GTNN bạn nhé. mà mình chưa thấy sử dụng x,y,z thuộc đoạn 0;1 nhỉ