Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhiều quá mk phụ bạn chút thôi
a)47*(23+50)-23*(47+50)=47*23+47*50-23*47+23*50=(47*23-23*47)+(47*50+23*50)=(47+23)*50=70*50=3500
b)29*(85-47)+85*(47-29)=29*85-29*47+85*47-85*29=(29*85-85*29)+(85*47-29*47)=(85-29)*47=56*47=2632
c)37*90-37*(-10)=37*[90-(-10)]=37*100=3700
a. 47.[23+50]-23.[47+50]
=47.73-23.97
=3431-2231
=1200
b,29.[85-47]+85.[47-29]
=29.38+85.18
=1102+1520
=-428
c,37.90-37.[-10]
=37.(90-(-10))
=37.100
=3700
d,15.12-3.5.10
=15.12-15.10
=15.(12-10)
=15.2
=30
e,29.[19-13]-19.[29-13]
=29.6-19.16
=174-304
=-130
f,33.[17-5]-17.[33-5]
=33.12-17.32
=396-544
=-148
g,54-6.[17+9]
=54-6.26
=54-156
=-102
h,1000+[-570]+2341+[-430]
=430+2341+(-430)
=(-430+430)+2341
=0+2341
=2341
giải giúp mik với a) 2^x+1 =64
b) 570-x: 3 và 17<x<20
c) (4x-9)-(x+111)=0
giúp mik với nha mik cần gấp
\(a,2^{x+1}=64\\ \Rightarrow a,2^{x+1}=2^6\\ \Rightarrow x+1=6\\ \Rightarrow x=5\)
\(b,x=18\)
\(c,\left(4x-9\right)-\left(x+111\right)=0\\ \Rightarrow4x-9-x-111=0\\ \Rightarrow3x-120=0\\ \Rightarrow3x=120\\ \Rightarrow x=40\)
a) x - 12 = 14 x = 14 + 12 x = 26
b) 2 x - 13 = 3 . 17 2 x = 51 + 13 2 x = 64 x = 64 : 2 x = 32
c) x - 43 = 2 . 18 x = 36 + 43 x = 79
d) x - 14 . 39 = 0 x - 14 = 0 x = 14
e) 13 - x . 28 = 28 13 - x = 28 : 28 13 - x = 1 x = 13 - 1 x = 12
f) 22 . 35 - x = 22 35 - x = 1 x = 35 - 1 x = 34
g) x - 24 : 2 = 18 x - 12 = 18 x = 39
h) 400 + 275 - x = 570 275 - x = 570 - 400 275 - x = 170 x = 275 - 170 x = 105
a) x – 12 = 14
x = 14 +12
x = 26
b) 2x – 13 = 3.17
2x = 51 + 13
2x = 64
x = 64 : 2
x = 32
c) x – 43 = 2.18
x = 36 +43
x = 79
d) (x – 14).39 = 0
x – 14 = 0
x = 14
e) (13 – x).28 = 28
13 – x = 1
13 – x = 1
x = 13 – 1
x = 12
f) 22.(35 – x) = 22
35 – x = 1
x = 35 – 1
x = 34
g) x – 24 : 2 = 18
x – 12 = 18
x = 39
h) 400 + (275 – x) = 570
275 – x = 570 – 400
275 – x = 170
x = 275 – 170
x = 105
a.
\(2^{2024}=2^2.2^{2022}=4.\left(2^3\right)^{674}=4.8^{674}\)
Do \(8\equiv1\left(mod7\right)\Rightarrow8^{674}\equiv1\left(mod7\right)\)
\(\Rightarrow4.8^{674}\equiv4\left(mod7\right)\)
Hay \(2^{2024}\) chia 7 dư 4
b.
\(5^{70}+7^{50}=\left(5^2\right)^{35}+\left(7^2\right)^{25}=25^{35}+49^{25}\)
Do \(\left\{{}\begin{matrix}25\equiv1\left(mod12\right)\\49\equiv1\left(mod12\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}25^{35}\equiv1\left(mod12\right)\\49^{25}\equiv1\left(mod12\right)\end{matrix}\right.\)
\(\Rightarrow25^{35}+49^{25}\equiv2\left(mod12\right)\)
Hay \(5^{70}+7^{50}\) chia 12 dư 2
c.
\(3^{2005}+4^{2005}=\left(3^5\right)^{401}+\left(4^5\right)^{401}=243^{401}+1024^{401}\)
Do \(\left\{{}\begin{matrix}243\equiv1\left(mod11\right)\\1024\equiv1\left(mod11\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}243^{401}\equiv1\left(mod11\right)\\1024^{401}\equiv1\left(mod11\right)\end{matrix}\right.\)
\(\Rightarrow243^{401}+1024^{401}\equiv2\left(mod11\right)\)
Hay \(3^{2005}+4^{2005}\) chia 11 dư 2
d.
\(1044\equiv1\left(mod7\right)\Rightarrow1044^{205}\equiv1\left(mod7\right)\)
Hay \(1044^{205}\) chia 7 dư 1
e.
\(3^{2003}=3^2.3^{2001}=9.\left(3^3\right)^{667}=9.27^{667}\)
Do \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1\left(mod13\right)\)
\(\Rightarrow9.27^{667}\equiv9\left(mod13\right)\)
hay \(3^{2003}\) chia 13 dư 9
( - 13 ) + ( - 570 ) + ( - 17 ) + 570
= ( - 13 ) - 570 - 17 + 570
= ( - 13 - 17 ) - ( 570 - 570 )
= - 30 - 0
= - 30
nhóm số thứ nhất và số thứ 3,số thứ 2 và thứ 4
(-13)+(-17)+(-570)+570
=(-20)+0
=-20