Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : S = 1*2 + 2*3 +3*4 + .... + 50*51
3S=1*2*3+2*3*3+3*4*3+....+50*51*3
3S=1*2*3+2*3*(4-1)+3*4*(5-2)+....+50*51*(52-49)
3S=1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+...+50*51*52-49*50*51
3S=50*51*52
S=(50*51*52)/3=442000
b,Ta có 12 + 22 + 32 + ....... + n2=\(\frac{n\cdot\left(n+1\right)\cdot\left(2n+1\right)}{6}\)
=> 12 + 22 + 32 + ....... + 502= \(\frac{50\cdot\left(50+1\right)\cdot\left(2\cdot50+1\right)}{6}\)
=\(\frac{50\cdot51\cdot101}{6}\)= 42925
\(a.A=2+2+2^2+2^3+2^4+...+2^{99}\)
\(A=2+\left(2+2^2+2^3+2^4+...2^{99}\right)\)
\(\Rightarrow A-2=2+2^2+2^3+2^4+...+2^{99}\)
\(2.\left(A-2\right)=2^2+2^3+2^4+2^5+...+2^{100}\)
\(2.\left(A-2\right)-\left(A-2\right)=2^{100}-2=2.2^{99}\)
\(A=2.2^{99}+2\)
Câu b bạn tự giải nhé
\(A=2+2^2+2^3+2^4+......+2^{98}+2^{99}\)
\(2A=2^2+2^3+2^4+2^5+.....+2^{99}+2^{100}\)
\(\Rightarrow2A-A=A=2^{100}-2\)
\(B=1+5+5^2+5^3+........+5^{50}+5^{51}\)
\(5B=5+5^2+5^3+5^4+.....+5^{51}+5^{52}\)
\(5B-B=4B=5^{52}-1\)
\(\Rightarrow B=\frac{5^{52}-1}{4}\)
1/ S=1.2+2.3+3.4+...+50.51
=> 3S=1.2.3+2.3.3+3.4.3+...+50.51.3
=> 3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+50.51(52-49)
=> 3S=(1.2.3+2.3.4+3.4.5+...+50.51.52)-(1.2.3+2.3.4+...+49.50.51)
=> 3S=50.51.52 => S=50.51.52:3=44200
Đáp số: 44200
2/ A=12+22+32+42+...+502 = 1(2-1)+2(3-1)+3(4-1)+...+50(51-1)
=> A=(1.2+2.3+3.4+...+50.51)-(1+2+3+...+50)
=> A=S-\(\frac{50\left(50+1\right)}{2}\)=44200-1275
A=42925
Đáp số: 42925