Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Nếu (a + b) < 0 thì bất đẳng thức đúng
Với (a + b) \(\ge0\)thì ta có
\(2a^2+ab+2b^2\ge\frac{5}{4}\left(a^2+2ab+b^2\right)\)
\(\Leftrightarrow3a^2-6ab+3b^2\ge0\)
\(\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)
b/ Áp dụng BĐT BCS :
\(1=\left(1.\sqrt{a}+1.\sqrt{b}+1.\sqrt{c}\right)^2\le3\left(a+b+c\right)\Rightarrow a+b+c\ge\frac{1}{3}\)
Áp dụng câu a/ :
\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)
\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\)
\(\sqrt{2c^2+ac+2a^2}\ge\frac{\sqrt{5}}{2}\left(a+c\right)\)
\(\Rightarrow P\ge\frac{\sqrt{5}}{2}.2\left(a+b+c\right)\ge\frac{\sqrt{5}}{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{9}\)
Vậy min P = \(\frac{\sqrt{5}}{3}\) khi a=b=c=1/9
Sửa đề: GTLN
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{a+\sqrt{2019a+bc}}=\frac{a}{a+\sqrt{a\left(a+b+c\right)+bc}}=\frac{a}{a+\sqrt{a^2+ab+ca+bc}}\)
\(=\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{\left(\sqrt{ab}+\sqrt{ac}\right)^2}}\)
\(=\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{b+\sqrt{2019b+ac}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};\frac{c}{c+\sqrt{2019c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Cộng theo vế 3 BĐT trên ta có:
\(P\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
a, ĐK: \(a\ge0;\) a khác 4
b,\(A=\frac{a+3\sqrt{a}+2+2a-4\sqrt{a}-5\sqrt{a}-2}{\left(\sqrt{a}-2\right)\cdot\left(\sqrt{a}+2\right)}=\frac{3a-6\sqrt{a}}{\left(\sqrt{a}+2\right)\cdot\left(\sqrt{a}-2\right)}=\frac{3\sqrt{a}}{\sqrt{a}+2}\)
c, để A= 2 KHI \(\frac{3\sqrt{a}}{\sqrt{a}+2}=2\)
<=>\(3\sqrt{a}=2\sqrt{a}+4\)
<=>\(\sqrt{a}=4\)
<=>a=16
tick nha