Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm :
1) Khi x=9 ; giá trị của A là :
\(A=\frac{\sqrt{9}}{\sqrt{9}+2}=\frac{3}{3+2}=\frac{3}{5}\)
2) Ta có :
\(B=...\)
\(=\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1.\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\)
\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
3) Ta có :
\(\frac{A}{B}=\frac{\sqrt{x}}{\sqrt{x}+2}\div\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\sqrt{x}}=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}=1-\frac{4}{\sqrt{x}+2}\)
Xét :
\(\frac{A}{B}+1=\frac{4}{\sqrt{x+2}}>0\Rightarrow\frac{A}{B}>-1\)
=> Điều phải chứng minh
1, thay x=9(TMĐKXĐ) vào A ta đk:
A=\(\dfrac{\sqrt{9}}{\sqrt{9}-2}=3\)
vậy khi x=9 thì A =3
2,với x>0,x≠4 ta đk:
B=\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
vậy B=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
3,\(\dfrac{A}{B}>-1\) (x>0,x≠4)
⇒\(\dfrac{\sqrt{x}}{\sqrt{x}+2}:\dfrac{\sqrt{x}}{\sqrt{x}-2}>-1\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}+2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}>-1\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+2}>-1\)
⇒\(\sqrt{x}-2>-1\) (vì \(\sqrt{x}+2>0\))
⇔\(\sqrt{x}>1\)⇔x=1 (TM)
vậy x=1 thì \(\dfrac{A}{B}>-1\) với x>0 và x≠4
a) \(M=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
b) \(M=\dfrac{\sqrt{a}-1}{\sqrt{a}}=1-\dfrac{1}{\sqrt{a}}< 1\)
c) \(M=\dfrac{\sqrt{a}-1}{\sqrt{a}}=\dfrac{\sqrt{3-2\sqrt{2}}-1}{\sqrt{3-2\sqrt{2}}}=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}-1}{\sqrt{\left(\sqrt{2}-1\right)^2}}=\dfrac{\sqrt{2}-1-1}{\sqrt{2}-1}=\dfrac{\sqrt{2}-2}{\sqrt{2}-1}\)
\(a,M=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ b,M=1-\dfrac{1}{\sqrt{a}}< 1\\ c,a=3-2\sqrt{2}\Leftrightarrow\sqrt{a}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\\ \Leftrightarrow M=\dfrac{\sqrt{2}-1-1}{\sqrt{2}-1}=\dfrac{\sqrt{2}-2}{\sqrt{2}-1}=\dfrac{-\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=-\sqrt{2}\)
Câu 2:
Ta có: \(M=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\left(1+\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)
\(=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)
\(=1-a\)
Câu 1:
Ta có: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2\)
\(=\left(\sqrt{a}+1\right)^2\cdot\dfrac{1}{\left(\sqrt{a}+1\right)^2}\)
\(=1\)
b. \(=\left(\dfrac{\sqrt{a}-a+a\left(1-\sqrt{a}\right)}{1-\sqrt{a}}\right):\left(\dfrac{2\sqrt{a}}{1+\sqrt{a}}\right)\)
\(=\left(\dfrac{2\sqrt{a}}{1-\sqrt{a}}\right):\left(\dfrac{2\sqrt{a}}{1+\sqrt{a}}\right)\)
\(=\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\)
\(=1-a\)
\(a.\sqrt{8}-2\sqrt{50}+\sqrt{18}=2\sqrt{2}-10\sqrt{2}+3\sqrt{2}=\sqrt{2}\left(2-10+3\right)=-5\sqrt{2}\)
\(b.\left(\dfrac{\sqrt{a}-a}{1-\sqrt{a}}+\sqrt{a}\right):\dfrac{2\sqrt{a}}{1+\sqrt{a}}\left(đk:a\ge0;a\ne1\right)\)
\(=\left(\sqrt{a}+\sqrt{a}\right).\dfrac{1+\sqrt{a}}{2\sqrt{a}}\)
\(=2\sqrt{a}.\dfrac{1+\sqrt{a}}{2\sqrt{a}}\)
\(=1+\sqrt{a}\)
(Chỗ điều kiện bài b mik thấy a = 0 cũng có thể là nghiệm nên mik sửa lại nhé)
\(M=\dfrac{a\sqrt{a}-b\sqrt{b}-a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\\ M=\dfrac{a\sqrt{b}+b\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ M=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)
\(\left(1-a\right)\left(1-b\right)+2\sqrt{ab}=1\\ \Leftrightarrow1-a-b+ab+2\sqrt{ab}=1\\ \Leftrightarrow a+b-ab-2\sqrt{ab}=0\\ \Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2=ab\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{a}-\sqrt{b}=\sqrt{ab}\\\sqrt{a}-\sqrt{b}=-\sqrt{ab}\end{matrix}\right.\)
Với \(\sqrt{a}-\sqrt{b}=\sqrt{ab}\Leftrightarrow M=\dfrac{\sqrt{ab}}{\sqrt{ab}}=1\)
Với \(\sqrt{a}-\sqrt{b}=-\sqrt{ab}\Leftrightarrow M=\dfrac{\sqrt{ab}}{-\sqrt{ab}}=-1\)
\(M=\dfrac{a\sqrt{a}-b\sqrt{b}-a\left(\sqrt{a}-\sqrt{b}\right)+b\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{a\sqrt{b}+b\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)
\(\left(1-a\right)\left(1-b\right)+2\sqrt{ab}=1\)
\(\Leftrightarrow a+b-ab-2\sqrt{ab}=0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2=ab\Leftrightarrow\sqrt{a}-\sqrt{b}=\sqrt{ab}\)
\(M=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{ab}}{\sqrt{ab}}=1\)
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)
\(P=-\dfrac{3}{5}\) sao suy ra đc \(\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\) thế
\(a,M=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\\ M=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,M< \dfrac{1}{6}\Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}-\dfrac{1}{6}< 0\\ \Leftrightarrow\dfrac{2\sqrt{a}-4-\sqrt{a}}{6\sqrt{a}}< 0\Leftrightarrow\dfrac{\sqrt{a}-4}{6\sqrt{a}}< 0\\ \Leftrightarrow\sqrt{a}-4< 0\left(6\sqrt{a}>0\right)\\ \Leftrightarrow a< 16\\ \Leftrightarrow0< a< 16\left(kết.hợp.ĐKXĐ\right)\)
a: Ta có: \(P=\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right)\cdot\dfrac{\sqrt{a}-1}{a^2}\)
\(=\dfrac{4a-1}{\sqrt{a}-1}\cdot\dfrac{\sqrt{a}-1}{a^2}\)
\(=\dfrac{4a-1}{a^2}\)
b: Để P=3 thì \(4a-1=3a^2\)
\(\Leftrightarrow3a^2-4a+1=0\)
\(\Leftrightarrow\left(3a-1\right)\left(a-1\right)=0\)
hay \(a=\dfrac{1}{9}\)
a) ĐK: a>0; a≠1
Ta có: \(P=\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right).\dfrac{\sqrt{a}-1}{a^2}\)
\(=\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}-1}\right).\dfrac{\sqrt{a}-1}{a^2}\)
\(=\dfrac{4a-1}{\sqrt{a}-1}.\dfrac{\sqrt{a}-1}{a^2}=\dfrac{4a-1}{a^2}\)
b) Ta có: \(P=3\Leftrightarrow\dfrac{4a-1}{a^2}=3\Leftrightarrow3a^2=4a-1\Leftrightarrow3a^2-4a+1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\left(loại\right)\\a=\dfrac{1}{3}\left(tm\right)\end{matrix}\right.\)
1:\(\sqrt{32}+\sqrt{50}-2\sqrt{8}+\sqrt{18}\)
\(=4\sqrt{2}+5\sqrt{2}-2\cdot2\sqrt{2}+3\sqrt{2}\)
\(=9\sqrt{2}+3\sqrt{2}-4\sqrt{2}=8\sqrt{2}\)
2:a: \(M=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\left(\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
b: \(M-1=\dfrac{\sqrt{a}-1}{\sqrt{a}}-1=\dfrac{\sqrt{a}-1-\sqrt{a}}{\sqrt{a}}=-\dfrac{1}{\sqrt{a}}< 0\)
=>M<1