K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11

Cứu túi bài này 8,5555555%=bao

nhiêu 

a: =(x^2+3x)(x^2+3x+2)+1

=(x^2+3x)^2+2(x^2+3x)+1

=(x^2+3x+1)^2>=0 với mọi x

 

b: (a^2+b^2+c^2)(x^2+y^2+z^2)-(ax+by+cz)^2

=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz

=(a^2y^2-2axby+b^2x^2)+(a^2z^2-2azcx+c^2x^2)+(b^2z^2-2bzcy+c^2y^2)

=(ay-bx)^2+(az-cx)^2+(bz-cy)^2>=0(luôn đúng)

16 tháng 7 2023

P = (x^2 + 2x) - 2024
= (x^2 + 2x + 1) - 1 - 2024
= (x + 1)^2 - 2025

Với mọi giá trị của x, (x + 1)^2 luôn lớn hơn hoặc bằng 0. Do đó, giá trị nhỏ nhất của P là khi (x + 1)^2 đạt giá trị nhỏ nhất, tức là bằng 0.

Khi (x + 1)^2 = 0, ta có x + 1 = 0, từ đó suy ra x = -1.

Vậy, giá trị nhỏ nhất của biểu thức P là P = (-1 + 1)^2 - 2025 = -2025.

a: =>x-3>0

=>x>3

b: \(x^2-x+5=x^2-x+\dfrac{1}{4}+\dfrac{19}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0\forall x\)

c: \(\Leftrightarrow x^2+4x-3< =0\)

\(\Leftrightarrow\left(x+2\right)^2< =7\)

\(\Leftrightarrow-\sqrt{7}< =x+2< =\sqrt{7}\)

hay \(-\sqrt{7}-2< =x< =\sqrt{7}-2\)

9 tháng 9 2021

\(1,x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\\ 2,-2x^2-x-1=-2\left(x^2+2\cdot\dfrac{1}{4}x+\dfrac{1}{16}+\dfrac{7}{16}\right)\\ =-2\left(x+\dfrac{1}{4}\right)^2-\dfrac{7}{8}\le-\dfrac{7}{8}< 0\\ 3,\dfrac{1}{2}x^2-2x+2=\dfrac{1}{2}\left(x^2-4x+4\right)=\dfrac{1}{2}\left(x-2\right)^2\ge0\)

9 tháng 9 2021

ối, ghê vậy

19 tháng 5 2017

a) \(2-x\ge0\Leftrightarrow x\le2\)(chuyển x sang bên phải rồi đảo vế)

b) \(2+x\ge0\Leftrightarrow x\ge-2\)(cộng cả hai vế với -2)

c) \(7-x\ge0\Leftrightarrow x\le7\)(giống phần a)

Bạn tự kết luận nha!!