K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2024

Bước đầu tiên, chúng ta hãy xem xét phần (b+1)(b+2)(b + 1)(b + 2):

(b+1)(b+2)=b2+3b+2(b + 1)(b + 2) = b^2 + 3b + 2

Do đó, phương trình trở thành:

b2+3b+2−2a=929b^2 + 3b + 2 - 2^a = 929 b2+3b+2=929+2ab^2 + 3b + 2 = 929 + 2^a

Bây giờ, ta thử từng giá trị của aa để tìm bb:

  1. Thử a=8a = 8 (vì 28=2562^8 = 256)

b2+3b+2=929+256b^2 + 3b + 2 = 929 + 256 b2+3b+2=1185b^2 + 3b + 2 = 1185

Giải phương trình bậc hai:

b2+3b+2=1185b^2 + 3b + 2 = 1185 b2+3b−1183=0b^2 + 3b - 1183 = 0

Giải phương trình bậc hai này bằng công thức nghiệm:

b=−b2±b2−4ac2ab = \frac{-b_2 \pm \sqrt{b^2 - 4ac}}{2a}

Áp dụng cho a=1,b=3,c=−1183a = 1, b = 3, c = -1183:

b=−3±9+4⋅11832b = \frac{-3 \pm \sqrt{9 + 4 \cdot 1183}}{2} b=−3±47362b = \frac{-3 \pm \sqrt{4736}}{2}

Bởi vì căn bậc hai của 4736 không phải là số nguyên, giá trị bb sẽ không phải là số tự nhiên.

  1. Thử a=9a = 9 (vì 29=5122^9 = 512)

b2+3b+2=929+512b^2 + 3b + 2 = 929 + 512 b2+3b+2=1441b^2 + 3b + 2 = 1441

Giải phương trình bậc hai:

b2+3b+2=1441b^2 + 3b + 2 = 1441 b2+3b−1439=0b^2 + 3b - 1439 = 0

Giải phương trình bậc hai này bằng công thức nghiệm:

b=−3±9+4⋅14392b = \frac{-3 \pm \sqrt{9 + 4 \cdot 1439}}{2} b=−3±57562b = \frac{-3 \pm \sqrt{5756}}{2}

Bởi vì căn bậc hai của 5756 không phải là số nguyên, giá trị bb sẽ không phải là số tự nhiên.

Tiếp tục thử các giá trị khác của aa hoặc kiểm tra lại giả thiết và bài toán để tìm ra lời giải chính xác hơn (nếu bạn thấy tôi đúng)

29 tháng 10 2023

a) \(10^a+483=b^2\)   (*)

 Nếu \(a=0\) thì (*) \(\Leftrightarrow b^2=484\Leftrightarrow b=22\)

 Nếu \(a\ge1\) thì VT (*) chia 10 dư 3, mà \(VP=b^2\) không thể chia 10 dư 3 nên ta có mâu thuẫn. Vậy \(\left(a,b\right)=\left(0,22\right)\) là cặp số tự nhiên duy nhất thỏa mãn điều kiện bài toán.

 (Chú ý: Trong lời giải đã sử dụng tính chất sau của số chính phương: Các số chính phương khi chia cho 10 thì không thể dư 2, 3, 7, 8. Nói cách khác, một số chính phương không thể có chữ số tận cùng là 2, 3, 7, 8)

b) Bạn gõ lại đề bài nhé, chứ mình nhìn không ra :))

13 tháng 9 2023

Để chứng minh rằng không tồn tại các số tự nhiên a, b, c, d thỏa mãn adcb = 12345 và a^2 = b^2 + c^2 + d^2, ta có thể sử dụng phương pháp phản chứng (proof by contradiction). Giả sử rằng tồn tại các số tự nhiên a, b, c, d thỏa mãn hai điều kiện trên. Từ a^2 = b^2 + c^2 + d^2, ta có thể suy ra rằng a^2 là một số chẵn (vì tổng của các số bình phương là số chẵn). Do đó, a cũng phải là một số chẵn. Tuy nhiên, khi nhân các số a, b, c, d lại với nhau theo thứ tự adcb, ta có một số lẻ (12345). Điều này chỉ có thể xảy ra khi ít nhất một trong các số a, b, c, d là số lẻ. Nhưng theo giả thiết, a là số chẵn. Điều này dẫn đến mâu thuẫn với giả thiết ban đầu, khiến cho giả thiết không thể đúng. Vì vậy, không tồn tại các số tự nhiên a, b, c, d thỏa mãn adcb = 12345 và a^2 = b^2 + c^2 + d^2.

27 tháng 9 2024

Cộng vế với vế ta có:

a^2+b^2+c^2+2(ab+bc+ca)=20+180+200 a^2+b^2+c^2+2(ab+bc+ca)=20+180+200

→(a+b+c)2=400→(a+b+c)2=400

→a+b+c=20→a+b+c=20 vì a,b,c∈N∗→a+b+c≥0a,b,c∈N∗→a+b+c≥0

Ta có:

a^2+ab+ac=20→a(a+b+c)=20→a⋅20=20→a=1a2+ab+ac=20→a(a+b+c)=20→a⋅20=20→a=1

ab+b^2+bc=180→b(a+b+c)=180→b⋅20=180→b=9ab+b2+bc=180→b(a+b+c)=180→b⋅20=180→b=9

ac+bc+c2=200→c(a+b+c)=200→c⋅20=200→c=10

27 tháng 9 2024

hi bn nha

11 tháng 12 2019

1,(a,b)+[a,b]=10

Gọi ƯCLN(a,b) là d

BCNN(a,b) là m, ta có

a=dm             (m,n)=1                   

a-dn               m>n

=> [a,b]=dmn

Ta thấy (a,b)+[a,b]=10

Mà (a,b)=d;[a,b]=dmn

=> d+dmn=10 => d(mn+1)=10

=> d và mn+1 đều thuộc Ư(10)

Ư(10)={1;2;5;10}

d,mn+1 thuộc {1;2;5;10}

Ta có bảng sau  

  d    mn+1  mn  m n a b
  1     10   9  9 19 1
  2    5  4 4 1 8 2 
  5    2 1bỏbỏbỏbỏ
  10    1 0bỏbỏbỏbỏ

BẠN TỰ KẾT LUẬN NHÉ!

diiiiiiiiiiiiiiiiiiiioaaaaaaaaaâkjfàokàokáafdá

gdfh

dgh

d

hgsdf

sdf

gsdg

sdg

s

dg

dsg

gs

s

dg

s

dsdgsđsgsd

 Bài 3. 1) Tim hai số tự nhiên a và b biết rằng a + b = 810 và ước chung lớn nhất của chúng bằng 45. 2) Tìm hai số nguyên tố p và q biết rằng p>q sao cho p+q và p −g đều là các số nguyên tố.            Bài 4. 1) Cho hai số tự nhiên a và b thỏa mãn số m=(16a+17b)(17a+16b) là một bội số của 11. Chứng minh rằng số m cũng là một bội số của 121. 2) Tìm tổng tất cả các số tự nhiên có hai chữ...
Đọc tiếp

 Bài 3. 1) Tim hai số tự nhiên a và b biết rằng a + b = 810 và ước chung lớn nhất của chúng bằng 45. 2) Tìm hai số nguyên tố p và q biết rằng p>q sao cho p+q và p −g đều là các số nguyên tố.            Bài 4. 1) Cho hai số tự nhiên a và b thỏa mãn số m=(16a+17b)(17a+16b) là một bội số của 11. Chứng minh rằng số m cũng là một bội số của 121. 2) Tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5                                                                 Bài 5.  Cho hình vuông ABCD. Phần diện tích chung của ABCD và tam giác EFG được tô đen. Diện tích phần tô đen bằng 4/5 diện tích tam giác EFG và bằng 12 diện tích của hình vuông ABCD. Nếu diện tích tam giác EFG bằng 40cm, tính độ dài cạnh của hình vuông ABCD

0
3 tháng 5 2016

Gọi(a;b)=d, a=dm, b=dn, (m,n)=1,d,m,n thuộc N*

Ta có:a.b=(a,b).[a.b]

=>[a.b]=a.b:(a.b)

Theo đề bài ta có:

[a,b]+(a,)=55

=>a.b:(a,b)+(a,b)=55

Thay vào ta có:

dm.dn:d+d=55

=>d.mn+d=55

=>d.(mn+1)=55

Vì d,m,n thuộc N*, Gỉa sử a>b thì m>n ta có bảng sâu:

dmn+1mnab
155541541
511

10

5

1

2

50

25

5

10

115414411
     

Vậy(a,b)thuộc{(54,1);(50,5);(25,10);(44,11)}